Supporting Information for

One-Pot Synthesis of Flower-Like Bi₂S₃ Nanoparticles for Spectral CT imaging and Photothermal Therapy in Vivo

Cai Zhang,^{‡a*} Li Zhou,^{‡b} Jing Zhang,^c Rui Dai,^d Pengrui Zhuang,^e Zhaoxiang Ye^{a*}

- a. Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
- b. Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
- c. Department of Radiology, West China Hospital of Sichuan University, Chengdu 610044, China.
- d. Department of Echocardiography, Tianjin Children's Hospital, Tianjin 300074, China.
- e. Department of Radiology, Tianjin Medical University Second Hospital, Tianjin 300201, China.

‡These authors contributed equally to this work.

Fig. S1 SEM of the Bi_2S_3 NPs, scale bar: 1µm.

Fig. S2 CT signal curves and CT images of Bi_2S_3 NPs with various concentrations (7-34.8 mg/mL Bi_2S_3 NPs or iohexol) under different tube voltages and monochromatic energies. CT signal curves and CT images of Bi_2S_3 NPs obtained at the tube voltage of 80 kV (A), 100 kV (B), 120 kV (C) and 140 kV (D). CT value curves and spectral CT images of Bi_2S_3 NPs and iohexol at the monochromatic energies of 60 KeV (E), 100 KeV (F) and 140 KeV (G). (H) The CT values and monochromatic spectral CT images of Bi_2S_3 NPs (34.8 mg/mL) and iohexol (34.8 mg/mL) at different monochromatic energies.

Fig. S3 The photothermal heating stability assessment by five cycles of laser on/off operation (Laser on: 8 min, Laser off: 15 min).

Fig. S4 The viabilities of 3T3-L1 cells after incubated with different concentrations of Bi_2S_3 NPs by a MTT assay.

Fig. S5 Body weight changes of the mice treated with Bi₂S₃ NPs by subcutaneous injection or oral administration for 7 days, and the mice without any treatment were set as control.

Fig. S6 Histopathological analysis of the major organs (heart, liver, spleen, lung, kidney, stomach, intestine and colon) from the mice was conducted after subcutaneous injection or oral administration with Bi_2S_3 NPs for1 or 7 days, and the mice without any treatments were set as control.

Fig. S7 Biochemical analysis of mice at different time points after subcutaneous injection or oral administration of Bi_2S_3 NPs, and the mice without any treatment were set as the control group.

Fig. S8 Alpha analysis of the diversity of gut microbiota in female/male mice at different time points (3 and 7 days) after oral administration of Bi_2S_3 NPs. Untreated mice served as control group. The gut microbiota was evaluated by the indexes of Chao, Shannon, Simpson, and Observed species (A–H).

Fig. S9 Principal component analysis of the diversity of gut microbiota in female/male mice at different time points (3 and 7 days) after oral administration of Bi_2S_3 NPs. Mice without any treatment were set as the control.

Fig. S10 Picture and spectral CT imaging of the GI tract from the mouse with intestinal obstruction after oral administration of 400 μ L of Bi₂S₃ NPs 30 min (Fig. A, Fig. B), the obstruction site was marked with a yellow arrow. Spectral CT imaging of the obstruction site under various X-ray energies (Fig. C is 3-dimensional reconstruction, Fig. D is the coronal image).

Fig. S11 (A) Traditional CT imaging of GI tract of male mice after orally administration of 550 μ L Bi₂S₃ NPs (26 mg/mL Bi₂S₃ NPs, 74.6 mM Bi) or iohexol (20.4 mg/mL iohexol, 74.6 mM I) at 120 kV. (B) Spectral CT imaging of GI tract of male mice at 5 mins after orally administration of 550 μ L Bi₂S₃ NPs (26 mg/mL Bi₂S₃ NPs, 74.6 mM Bi) or iohexol (20.4 mg/mL iohexol, 74.6 mM I) at various X-ray energies (40, 60, 80, 120 and 140 KeV).

Material	Size	РСЕ	Laser	Mass	Biological	Ref.
				extinctio	compatibility	
				n		
				coefficie		
				nt		
				L/(g·cm)		
BSA-Bi ₂ S ₃	6.1 nm before	51%	808	2.5 (Bi)	N.A. (in vitro)	[1]
nanoparticles	coating and		nm		an acute	
	39.52 nm after				response of	
	BSA coating				kidney to Bi ₂ S ₃	
					NPs.	
BSA-coated	100 nm	28.5%	808	0.18	N.A.(in vitro)	[2]
BiOI@Bi ₂ S ₃			nm		Good biosafety	
					(in vivo)	
BSA-CuS	3.7 nm	51.5%	980	12.5 (Cu)	$100 \mu M$ (cell	[3]
nanocrystals			nm		viability>80%)	
					Good biosafety	
					(in vivo)	
Cu ₂ -xS	6.5 nm	16.3%	808	N.A.	50, 6.4, 3.2	[4]
nanocrystals			nm		mg/L(cell	
					viability>80%	
					of 4 h, 24 h, 48	
					h, respectively)	
					High dose of	
					Cu _{2-x} S NCs (100	
					and 150 mg/kg)	
					led to	
					degenerative	
					necrosis and	
					disappearance of	
					hepatocytes (in	
					vivo).	
Gold	Core: 50 nm;	31.21 %	808	18.18	57.8 mg/L	[5]
nanostar	Silica shell: 50-		nm		(HeLa cell	
core (Au	60 nm; Total				viability>72%,	
NCs), MS	size: ≈150 nm				A549 cell	
shell coated					viability > 86)	
with FA					Good biosafety	
					(in vivo)	
PEG/ Citrate	PEG@Fe ₃ O ₄ :	16.9%	808	10	Fe ₃ O ₄ -Cit: 500	[6]

Table 1 Overview of characteristics of photothermal agents (PCE: Photothermal conversionefficiency;N.A.: Not applicable).

@Fe ₃ O ₄	300 nm	(PEG);	nm		mg/L (cell	
particles	Citrate@Fe ₃ O ₄ :	15.9%			viability>80%)	
	240 nm;	(Citrate)			N.A. (in vivo)	
					Fe ₃ O ₄ -PEG:	
					1000 mg/L (cell	
					viability>80%)	
					N.A. (in vivo)	
Carbon dots	2.9 ± 0.5 nm	38.7%	808	10	N.A. (in vitro	[7]
			nm		and vivo)	
Ultrasmall	20 nm	N.A.	808	24.6	10 mg/L (cell	[8]
reduced			nm		viability>80%)	
graphene					N.A.(in vivo)	
oxide (nano-						
rGO)						
Dopamine -	160 nm	40%	808	2.75	12.5 mg/L (cell	[9]
melanin			nm		viability>80%)	
colloidal					Good biosafety	
nanospheres					(in vivo)	
Ultrasmall	100 nm	N.A.	808	30	50 mg/L (cell	[10]
iron oxide -			nm		viability \approx	
polypyrrole					100%)	
nanoparticles					Good biosafety	
(IONP@					(in vivo)	
PPy)						

Reference:

- Y. Wang, Y. Y. Wu, Y. J. Liu, J. Shen, L. Lv, L. B. Li, L. C. Yang, J. F. Zeng, Y. Y. Wang, L. S. W. Zhang, Z. Li, M. Y. Gao and Z. F. Chai, *Adv. Funct. Mater.*, 2016, 26, 5335-5344.
- S. G. Wang, X. Li, Y. Chen, X. J. Cai, H. L. Yao, W. Gao, Y. Y. Zheng, X. An, J. L. Shi and H. R. Chen, *Adv. Mater.*, 2015, 27, 2775-2782.
- T. Yang, Y. Wang, H. T. Ke, Q. L. Wang, X. Y. Lv, H. Wu, Y. A. Tang, X. L. Yang, C. Y. Chen, Y. L. Zhao and H. B. Chen, *Adv. Mater.*, 2016, 28, 5923-5930.
- S. H. Wang, A. Riedinger, H. B. Li, C. H. Fu, H. Y. Liu, L. L. Li, T. L. Liu, L. F. Tan, M. J. Barthel, G. Pugliese, F. De Donato, M. S. D'Abbusco, X. W. Meng, L. Manna, H. Meng and T. Pellegrino, *ACS Nano*, 2015, 9, 1788-1800.
- J. An, X. Q. Yang, K. Cheng, X. L. Song, L. Zhang, C. Li, X. S. Zhang, Y. Xuan, Y. Y. Song, B. Y. Fang, X. L. Hou, Y. D. Zhao and B. Liu, *ACS Appl. Mater. Inter.*, 2017, 9, 41748-41759.
- H. B. Peng, S. W. Tang, Y. Tian, R. Zheng, L. Zhou and W. L. Yang, *Part. Part. Syst. Char.*, 2016, **33**, 332-340.
- M. Zheng, Y. Li, S. Liu, W. Q. Wang, Z. G. Xie and X. B. Jing, ACS Appl. Mater. Inter., 2016, 8, 23533-23541.

- 8. J. T. Robinson, S. M. Tabakman, Y. Y. Liang, H. L. Wang, H. S. Casalongue, D. Vinh and H. J. Dai, *J AM Chem. Soc.*, 2011, **133**, 6825-6831.
- 9. Y. L. Liu, K. L. Ai, J. H. Liu, M. Deng, Y. Y. He and L. H. Lu, *Adv. Mater.*, 2013, **25**, 1353-1359.
- X. J. Song, H. Gong, S. N. Yin, L. Cheng, C. Wang, Z. W. Li, Y. G. Li, X. Y. Wang, G. Liu and Z. Liu, *Adv. Funct. Mater.*, 2014, 24, 1194-1201.