Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

## **Electronic Supplementary Information**

**Table S1:** Solvent phase stabilization energy (in kcal mol<sup>-1</sup>) in different solvents (single point calculations) obtained at the B3LYP/6-31++G(d,p) level of theory

| System                 | SE (Carbon<br>Tetrachloride) | SE (Ethanol)<br>$\epsilon = 24.3$       | SE (Acetonitrile)<br>$\epsilon$ = 37.5 | SE(DMSO)<br>ε = 46.7 | SE (Water)<br>ε = 80.4 |
|------------------------|------------------------------|-----------------------------------------|----------------------------------------|----------------------|------------------------|
| 1-01-Li                | ε = 2.2<br>104 74            | ε = 2.2<br>104 74 114 68 1 <sup>1</sup> |                                        | 115 25               | 115 51                 |
| 1-01-Na                | 86.17                        | 100.43                                  | 110.03                                 | 101 21               | 101 57                 |
| 1-01-K                 | 87.48                        | 100.45                                  | 100.55                                 | 101.21               | 101.37                 |
| 1-02-1-K               | 118.00                       | 135.07                                  | 136.67                                 | 137.07               | 137 58                 |
| 1-0 <sub>2</sub> -1-be | 56 50                        | 98.00                                   | 00 57                                  | 100.44               | 101 57                 |
| 1-02-1-101g            | 76.98                        | 125.00                                  | 127.76                                 | 128.74               | 130.03                 |
| 1-02-1-08              | 70.38                        | 125.50                                  | 127.70                                 | 120.74               | 130.03                 |
| 2-01-Li                | 111 04                       | 111.45                                  | 111 52                                 | 111 56               | 111.61                 |
| 2-0-1-Na               | 94.85                        | 100.61                                  | 100.84                                 | 100.98               | 101 15                 |
| 2-0-1-K                | 96.61                        | 102.25                                  | 102.64                                 | 102.58               | 102.73                 |
| 2-02-1-Be              | 168 31                       | 168.63                                  | 168.66                                 | 168.68               | 168.70                 |
| 2-02-1-Mg              | 111 51                       | 100.05                                  | 124.26                                 | 124 56               | 124.96                 |
| 2.021.08               | 136.08                       | 155 30                                  | 156.08                                 | 156 51               | 157.07                 |
| 202100                 | 150.00                       | 155.50                                  | 130.00                                 | 150.51               | 137.07                 |
| 3-0-2-Li               | 207 95                       | 204 58                                  | 204 52                                 | 204 49               | 204 45                 |
| 3-02-2-Na              | 170.41                       | 176.89                                  | 177.16                                 | 177 31               | 177 51                 |
| 3-0-2-K                | 169 74                       | 176.94                                  | 177.21                                 | 177.31               | 177.51                 |
| 3-02-Be                | 358 37                       | 358 50                                  | 358 55                                 | 358 57               | 358.61                 |
| 3-02-Mg                | 251.89                       | 267.79                                  | 268.49                                 | 268.87               | 269.38                 |
| 3-0-2-02               | 291.05                       | 315.92                                  | 316.92                                 | 317.48               | 318 21                 |
| 5 67 2 64              | 231.00                       | 515.52                                  | 510.52                                 | 517.10               | 510.21                 |
| 4-02-3-1 i             | 392.26                       | 392.05                                  | 392.00                                 | 391 97               | 391 94                 |
| 4-0 <sub>2</sub> -3-Na | 340.10                       | 350.05                                  | 350.54                                 | 350.82               | 351.20                 |
| 4-0 <sub>2</sub> -3-K  | 339 58                       | 348.07                                  | 348 41                                 | 346 74               | 350.43                 |
| 4-02-3-Be              | 555.61                       | 555 35                                  | 555.40                                 | 555 42               | 555.46                 |
| 4-0 <sub>2</sub> -3-Mg | 394.85                       | 413.22                                  | 414.03                                 | 414.47               | 415.06                 |
| 4-0 <sub>2</sub> -3-Ca | 447.36                       | 477.08                                  | 478.28                                 | 478.94               | 479.82                 |
|                        |                              |                                         |                                        |                      |                        |
| 5-02-4-Li              | 422.42                       | 413.53                                  | 413.32                                 | 413.20               | 413.05                 |
| 5-02-4-Na              | 344.36                       | 353.31                                  | 353.69                                 | 353.90               | 354.18                 |
| 5-0 <sub>2</sub> -4-K  | 339.12                       | 349.93                                  | 350.34                                 | 350.57               | 350.86                 |
| 5-0 <sub>2</sub> -4-Be | 753.80                       | 752.91                                  | 752.95                                 | 752.97               | 753.00                 |
| 5-0 <sub>2</sub> -4-Mg | 539.18                       | 561.63                                  | 562.61                                 | 563.16               | 563.88                 |
| 5-0 <sub>2</sub> -4-Ca | 604.23                       | 639.57                                  | 641.00                                 | 641.78               | 642.81                 |
|                        |                              | 1 1                                     |                                        | -                    | 1                      |
| 6-0 <sub>2</sub> -5-Li | 649.00                       | 634.36                                  | 639.23                                 | 639.14               | 633.88                 |
| 6-O <sub>2</sub> -5-Na | 557.37                       | 567.89                                  | 568.35                                 | 568.61               | 568.95                 |
| 6-0 <sub>2</sub> -5-K  | 558.20                       | 568.40                                  | 565.99                                 | 566.24               | 566.58                 |
| 6-O <sub>2</sub> -5-Be | 952.26                       | 950.58                                  | 950.59                                 | 950.60               | 950.62                 |
| 6-0 <sub>2</sub> -5-Mg | 682.63                       | 707.22                                  | 708.31                                 | 708.92               | 709.71                 |
| 6-O <sub>2</sub> -5-Ca | 760.85                       | 801.29                                  | 802.93                                 | 803.83               | 805.01                 |

**TABLE S2** Wave length of transitions,  $\Delta E$  values { $E_{HOMO}$ (Complex)-  $E_{HOMO}$ ( $O_2$ )}, oscillator strengths, major MOs involved in the transition and contribution of the MOs. (obtained at CAM-B3LYP/6-31++G (d,p) level of theory).

| System                 | Wavelength | ΔE      | Oscillator | Contributing | Expansion    |
|------------------------|------------|---------|------------|--------------|--------------|
|                        | (in nm)    | (in au) | Strength   | MO           | Co-efficient |
| 1-0 <sub>2</sub> -1-Li | 350.02     | 0.0524  | 0.0067     | HOMO→LUMO    | 0.94372      |
| 1-0 <sub>2</sub> -1-Na | 476.73     | 0.0988  | 0.0043     | HOMO→LUMO    | 0.96014      |
| 1-0 <sub>2</sub> -1-K  | 477.88     | 0.1234  | 0.0014     | HOMO→LUMO    | 0.94384      |
| 1-O <sub>2</sub> -1-Be | 309.77     | 0.0406  | 0.0067     | HOMO–1→LUMO  | 0.69802      |
| 1-0 <sub>2</sub> -1-Mg | 404.81     | 0.0935  | 0.0122     | HOMO−2→LUMO  | 0.25584      |
| 1-0 <sub>2</sub> -1-Ca | 573.53     | 0.1521  | 0.0095     | HOMO−2→LUMO  | 0.10365      |

**TABLE S3** Wave length of transitions, oscillator strengths, major MOs involved in the transition and contribution of the MOs compared with Li in all systems (obtained at CAM-B3LYP/6-31++G (d,p) level of theory).

| _ |                        |            |            |              | $(\cdot, \eta, \eta) = \cdot \cdot \cdot \cdot \cdot \eta$ |
|---|------------------------|------------|------------|--------------|------------------------------------------------------------|
|   | System                 | Wavelength | Oscillator | Contributing | Expansion Co-                                              |
|   |                        | (In nm)    | Strength   | MO           | Efficient                                                  |
|   | 1-02-1-Li              | 350.02     | 0.0666     | HOMO→LUMO    | 0.89997                                                    |
|   | 2-0 <sub>2</sub> -1-Li | 154.21     | 0.0449     | HOMO→LUMO    | 0.42705                                                    |
|   | 3-0 <sub>2</sub> -2-Li | 176.72     | 0.0182     | HOMO→LUMO+4  | 0.11783                                                    |
|   | 4-02-3-Li              | 281.63     | 0.0001     | HOMO→LUMO+2  | 0.97025                                                    |
|   | 5-0 <sub>2</sub> -4-Li | 243.13     | 0.0000     | HOMO→LUMO+4  | 0.47662                                                    |
|   | 6-0 <sub>2</sub> -5-Li | 254.45     | 0.0012     | HOMO→LUMO+4  | 0.97302                                                    |

Fig. S1 Dispersal of  $\pi$ - electron cloud in the benzene ring against a concentrated electron cloud in O<sub>2</sub> molecule

