Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic Supplementary Information

Three-dimensional flower-like Mn-Ni-Co-O microstructure as a high-

performance electrocatalyst for methanol oxidation reaction

Dan Jin,^{a,b} Zhen Li,^a Tingting Ma^a and Zhenghua Wang^{a,*}

 ^a Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, People's Republic of China
^b School of Pharmacy, Wannan Medical College, Wuhu 241002, People's Republic of

China

Fig. S1 XRD pattern of the Mn-Ni-Co precursor.

Fig. S2 XPS survey spectrum of the Mn-Ni-Co-O sample.

Fig. S3 (a) SEM image and (b) TEM image of the Mn-Ni-Co precursor.

Fig. S4 (a) XRD pattern of the Mn-Co-O sample; (b) XRD pattern of the Ni-Co-O sample; (c) a comparison of the XRD patterns of Mn-Ni-Co-O, Ni-Co-O and Mn-Co-O samples.

Fig. S5 (a, b) SEM images; (c, d) TEM images and (e, f) EDX spectra of Mn-Co-O and Ni-Co-O samples.

Catalyst	Potential window (V)	Current density	Scan rate (mV s ⁻¹)	Ref.
Mn-Co-O	0–0.6 (vs. Ag/AgCl)	$33 \mathrm{~mA~mg}^{-1}$	10	This work
Ni-Co-O	0–0.6 (vs. Ag/AgCl)	$73 \mathrm{~mA~mg}^{-1}$	10	This work
Mn-Ni-Co-O	0–0.6 (vs. Ag/AgCl)	113 mA mg^{-1}	10	This work
MnCo ₂ O ₄	0–0.7 (vs. Ag/AgCl)	79.9 A g^{-1}	10	[1]
MnCo ₂ O ₄	1.0–1.62 (vs. RHE)	96 A g^{-1}	10	[2]
NiCo ₂ O ₄	0–0.6 (vs. Hg/HgO)	$50 \mathrm{A}\mathrm{g}^{-1}$	10	[3]
Co ₃ O ₄ /NiCo ₂ O ₄	0–0.6 (vs. Hg/HgO)	$140 \mathrm{~mA~cm}^{-2}$	10	[4]
NiCo ₂ O ₄ /Ni(OH) ₂	0–0.6 (vs. Ag/AgCl)	92.3 A g^{-1}	10	[5]

Table S1 Comparison of the electrocatalysts in this work with other reports in literature.

References:

- [1] G. M. Thorat, H. S. Jadhav, J. G. Seo, Ceram. Int., 2017, 43, 2670-2679.
- [2] H. S. Jadhav, A. Roy, W. J. Chung, J. G. Seo, New J. Chem., 2017, 41, 15058-15063.
- [3] L. Qian, L. Gu, L. Yang, H. Yuan, D. Xiao, Nanoscale, 2013, 5, 7388-7396.
- [4] L. Qian, S. Luo, L. Wu, X. Hu, W. Chen, W. Chen, X. Wang, *Appl. Surf. Sci.*, 2020, 503, 144306.
- [5] B. Wang, Y. Cao, Y. Chen, R. Wang, X. Wang, X. Lai, C. Xiao, J. Tu, S. Ding, *Inorg. Chem. Front.*, 2018, 5, 172-182.