Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Synthesis of Indenophenanthridine *via* [4+2] Annulation Strategy: "Turn-Off" Fe³⁺ Ion Sensor, Practical Application in Live Cell Imaging and Reversible Acidochromism Studies[†]

Kannan Jamuna, Solaimalai Thimmarayaperumal, Shanmugam Sivakumar*†

Manikka Kubendran Arvind and Balasubramaniem Ashokkumar

Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University Madurai 625 021, India.

E-mail: shivazzen@gmail.com

Figure S.1: ¹H NMR spectrum of compound 4a

Figure S.5: ¹H NMR spectrum of compound 4c

Figure S.6: C¹³ NMR spectrum of compounds 4c

Figure S.7: ¹H NMR spectrum of compound 4d

Figure S.8: C¹³ spectrum of compound 4d

Figure S.9: ¹H NMR spectrum of compound 4e

Figure S.10: ¹³C NMR spectrum of compound 4e

Figure S.11: ¹H NMR spectrum of compound 4f

Figure S.12: ¹³C NMR spectrum of compound 4f

Figure S.13: ¹H NMR spectrum of compound 4g

Figure S.14: ¹³C NMR spectrum of compound 4g

Figure S.15: ¹H NMR spectrum of compound 4h

Figure S.16: ¹³C NMR spectrum of compound 4h

Figure S.17: HRMS spectrum of compound 4a

Figure S.18: HRMS spectrum of compound 4b

Figure S.19: ESI-MS spectrum of compound 4c

Figure S.20: HRMS spectrum of compound 4d

Figure S.21: HRMS spectrum of compound 4e

Figure S.23: HRMS spectrum of compound 4g

Figure S.24: HRMS spectrum of compound 4h

Figure S.25: IR Spectrum of compound 4b

Entry	Compound	Quantum yield ΦS (%)
1.	4a	0.17
2.	4b	0.23
3.	4c	0.13
4.	4d	0.08
5.	4e	0.20
6.	4f	0.13
7.	4g	0.22
8.	4h	0.12

Table S.1: Relative quantum yield of compound 4a- h

Figure S.26: UV spectra of compound 4b $(1 \times 10^{-5} \text{M})$ in DMSO

Figure S.27: Emission spectrum of 4b $(1 \times 10^{-5} \text{M})$ in DMSO

Figure S.28: Solid state emission spectrum of compound 4b

Figure S.29: Emission spectrum of compound 4b in various solvents

S.No.	Solvent list	λ _{UV} max (nm)	ε (M ⁻¹ cm ⁻ ¹)	λ _{PL} max (nm)	Stokes shift cm ⁻¹ & eV
1.	Hexane	310	32000	460	19,518.93, (1.30)
2.	CAN	310	61000	480	11,424.73, (1.41)
3.	THF	310	64000	470	10,981.47, (1.36)
4.	DCM	310	68000	470	10,981.47, (1.36)
5.	DMSO	310	84000	480	11,424.73, (1.41)
6.	МеОН	310	61000	500	12,258.06, (1.51)

 Table S.2: Solvatochromism studies results

Figure S.30: UV-Vis spectra of 4b (2×10^{-5} M) in different metal cations (150 µl)

Figure S.31: Emission spectra of **4b** (2×10^{-5} M) in various concentrations of Fe³⁺ (0-300 µl) in DMSO and (inset) plot of P.L intensity vs metal ion concentration.

Figure S.32: Stern-Volmer plot for 4b with Fe^{3+} in DMSO

Figure S.33: Job's plot

Figure S.34: The selectivity of **4b** $(2 \times 10^{-5} \text{M})$ in the presence of various metal ions in DMSO

Figure S.35: Optimized structure of A (4b) & B (4b + Fe³⁺) and Frontier orbital diagram of probe C (4b) & D (4b + Fe³⁺).

Figure S.36: Time–correlated single photon counting spectrometer for probe 4b and 4b+ Fe³⁺ $\lambda_{ex} = 350 \text{ nm}$ and $\lambda_{em} = 480 \text{ nm}$

System	λ _{ex}	λ _{em}	$\tau_1(ns)$	$\tau_2(ns)$	τ	χ^2
			(Rel%)	(Rel%)	average(ns)	
4b	350 nm	480 nm	1.57 (24.5)	3.06 (75.50)	2.7	1.19
$4b+Fe^{3+}$	350 nm	480 nm	1.34 (24.73)	3.34 (75.27)	2.8	1.13

Figure S.37: Cyclic voltammogram of probe 4b in DMSO with 0.1 M of LiclO₄

Figure S.38: UV-Vis spectra of probe **4b** $(1 \times 10^{-5} \text{ M})$ with addition various concentrations of TFA in DMSO

Figure S.39: Reversible emission spectra of probe **4b** $(1 \times 10^{-5} \text{ M})$ with the addition of different volumes of TFA and TEA in DMSO

Figure S.40: Reversible UV-vis spectra of probe **4b** $(1 \times 10^{-5} \text{ M})$ with the addition of a different volumes of TFA and TEA in DMSO

Figure S.41: Sigmoidal graph.

Figure S.42: Stren-Volmer plot of acidochromism studies of probe 4b

Figure S.43: Time–correlated single photon counting spectrometer for probe 4b and 4b+ TFA $\lambda_{ex} = 375$ nm and $\lambda_{em} = 480$ nm for probe 4b and $\lambda_{ex} = 375$ nm and $\lambda_{em} = 580$ nm for probe 4b+TFA

	λ _{ex}	λ _{em}	τ ₁ (Rel%)	τ ₂ (Rel%)	T _{average} (ns)	χ^2
2F-IND	375 nm	480 nm	2.06 ns (56.42)	5.52(43.58)	3.5	1.229
2F-IND + TFA	375 nm	580 nm	2.35 ns (82.71)	6.94 ns (17.29)	3.1	1.192

Table S.4: Fluorescence lifetime Parameters of compound 4b and 4b+ TFA