Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Page 1

Supporting Information

Hybrid Engineering of crystalline $NiSe_x$ nanorod arrays with amorphous Ni-P film towards promoted overall water electrocatalysis

Xiaohu Xu^{a*}, Le Su^a, Yujie Zhang^a, Lijuan Dong^{b*}, Xiangyang Miao^{a*}

^a Key Laboratory of Spectral Measurement and Analysis of Shanxi Province,

College of Physics and Information Engineering, Shanxi Normal University, No.339

Taiyu road, Xiaodian District, Taiyuan 030031, China

^b Shanxi Provincial Key Laboratory of Microstructure Electromagnetic Functional

Materials, Shanxi Datong University, Xingyun street, Nanjiao District, Datong,

037009, China.

*Corresponding author. E-mail: bigbrowm@163.com; Tel:+86-13623578753
*Corresponding author. E-mail: donglijuan_2012@163.com; Tel:+86-13994319080
*Corresponding author. E-mail: sxxymiao@126.com; Tel:+86-15035757788

Number of pages: 16

Number of figures: 15

Number of tables: 3

Content

Experimental Section
HRTEM imagesFig. S1
EDX plotFig. S2
Raman spectrum Fig. S3
Contact angle measurement
LSV curves with different deposition potential Fig. S5
LSV curves with different deposition time
LSV curves with different amounts of NaH ₂ PO ₂ Fig. S7
Quantitative H_2 measurementFig. S8
Cyclic voltammograms with different scanning rate
SEM images after stability test for HER Fig. S10
EDX plot after stability test for HER Fig. S11
XPS spectra after stability test for HER Fig. S12
SEM images after stability test for OER Fig. S13
EDX plot after stability test for OER Fig. S14
XPS spectra after stability test for OER Fig. S15
Comparison of HER performance

Comparison of OER performance	Table S2
-------------------------------	----------

Comparison of Cell voltage......Table S3

Materials

All chemicals were of analytical grade and used without further purification in the experiments. Hydrochloric acid (HCl), potassium hydroxide (KOH), anhydrous ethanol, acetone, Se powders, sodium borohydride (NaBH₄), sodium hypophosphite (NaH₂PO₂) and nickel nitrate hexahydrate (Ni(NO₃)₂·6H₂O) were purchased from Sinopharm Chemical Reagent Co., Ltd. Nickel foam (NF) was obtained from the KunShan Kunag Xun Electronics Co., Ltd. Pt/C (20 wt % Pt), ruthenium(IV) oxide (RuO₂) and Nafion (5 wt %) were purchased from Aladdin Ltd. The deionized (DI) water used in all experiments with a resistivity of 18.2 MΩ·cm⁻¹ was purified through a Millipore system.

Characterization

X-ray diffraction (XRD) patterns were obtained by X-ray diffractometer (Bruker D8-Advance) equipped with a Cu K α radiation source ($\lambda = 1.5418$ Å) to record the crystal diffraction patterns of samples. The morphology and structure of all samples were characterized by field-emission scanning electron microscopy (FE-SEM, Hitachi, SU-8010) and high-resolution transmission electron microscopy (HR-TEM, JEM-2100, 200 kV) with X-ray energy-dispersive spectroscopy. The surface composition and valence state of the samples were characterized by X-ray photoelectron spectroscopy (XPS, Kratos Axis Ultra DLD). Raman characterization was performed

on a Renishaw-inVia Raman spectrometer with 532 nm laser excitation. The static contact angle is measured by JY-82B Kruss DSA system at room temperature.

Electrochemical measurements

All electrochemical data tests were achieved by CHI 760E electrochemical workstation (CH Instruments, China) with a three-electrode system in an O₂ saturated 1.0 M KOH. The as-prepared samples supported on Ni foam, a mercury oxide electrode (Hg/HgO) and a carbon rod (4 mm in diameter) were employed as the working, reference and counter electrode, respectively. Cyclic Voltammetry (CV) measurements for OER and HER were scanned in the potential range from 0 to 1 V (vs. Hg/HgO), -1.5 to -1 V (vs. Hg/HgO) at a scanning rate of 200 mV·s⁻¹, respectively. And the corresponding polarization curves were obtained by using Linear Sweep Voltammetry (LSV) with a scan rate of 3 and 5 mV·s⁻¹, respectively. The stability test was implemented using chronopotentiometric method at certain potentials. In addition, the polarization curve of the OWS was measured from 1.0 to 2.0 V at a sweep rate of 5 mV s⁻¹ via a two-electrode configuration in 1 M KOH, and the chronopotentiometric curve was recorded at a constant potential of 1.52 V. The electrochemical data were not collected until the signals of working electrodes stabilized after scanning several times. Electrochemical impedance spectroscopy (EIS) experiments were conducted in the frequency range from 100 KHz to 1 Hz with an amplitude potential of 5 mV. All the potentials with regard to Hg/HgO were calibrated to the reversible hydrogen electrode (RHE) according to the following equation: E (RHE) = E (vs. Hg/HgO) + $0.059 \times pH+ 0.098$. All the measurements

above were corrected by manual iR compensation using the current and the solution resistance. Furthermore, all experiments were repeated at least three times to ensure reliability and reproducibility.

Fig. S1. HRTEM images of Ni-P/NiSe_x.

Fig. S2. Corresponding EDX plot of the Ni-P/NiSe_x/NF catalyst.

Fig. S3. Raman spectrum of as-prepared Ni-P/NiSe_x/NF.

Fig. S4. Contact angle measurement of samples NF (a, b), NiSe_x/NF (c, d) and Ni-P/NiSe_x/NF (e, f) catalysts at 0 and 8 s standing time (using a drop of 1.0 M KOH solution).

Fig. S5. (a) HER and (b) OER polarization curves of Ni-P/NiSe_x/NF synthesized with different deposition potential (-1, -2, -3 V).

Fig. S6. (a) HER and (b) OER polarization curves of Ni-P/NiSe_x/NF synthesized with different deposition time (5, 10, 20, 30 min).

Fig. S7. (a) HER and (b) OER polarization curves of Ni-P/NiSe_x/NF samples synthesized with different amounts of NaH₂PO₂ (1.5, 3, 6 mmol).

Fig. S8. Quantitative H₂ measurement via water displacement.

Fig. S9. CV curves of (a) Ni-P/NiSe_x/NF, (b) Ni-P/NF, (c) NiSe_x/NF, (d) NF in the non-faradaic region with different scanning rates from 40 to 140 mV·s⁻¹.

Fig. S10. Representative SEM images of the Ni-P/NiSe_x/NF catalyst after continuous 100 h for HER.

Fig. S11. Corresponding EDX plot of the Ni-P/NiSe_x/NF catalyst after continuous 100 h for HER.

Fig. S12. (a) XPS full survey spectrum of Ni-P/NiSe_x/NF after HER electrolysis. High-resolution XPS spectrum: (b) Ni 2p, (c) Se 3d, and (d) P 2p.

Fig. S13. Representative SEM images of the Ni-P/NiSe_x/NF catalyst after continuous 100 h for OER.

Fig. S14. Corresponding EDX plot of the Ni-P/NiSe_x/NF catalyst after continuous 100 h for OER.

Fig. S15. (a) XPS full survey spectrum of Ni-P/NiSe_x/NF after OER test. High-resolution XPS spectrum: (b) Ni 2p, (c) Se 3d, and (d) P 2p.

	Table.	S1 .	Comparisons	of	HER	catalytic	activity	of	Ni-P/NiSe _x /NF	with	some
ĺ	previou	ıs rep	oorted catalysts	in	1 mol/	L KOH so	olution.				

Material	Substrate	Overpotential HER@ 10mAcm ⁻²	Overpotential HER@ 100mA cm ⁻²	Reference
Ni-P/NiSe _x	Ni foam	98	165	This work
Co _{0.85} Se P Grap	Granhana	150	180	Adv. Mater
	Oraphene	150	@20mAcm ⁻²	2017, 29,1701589 ¹
Ni So.	Ni foam	203	279	Nano Energy
1113502				2016, 24,103 ²
MoSee@Nie o-Se	Ni foom	117	204	Electrochim. Acta
W105C2@1N10.855C	Ni Ioani	117	204	2017, 712 ³
NiSe ₂ @NiO _x	Glassy	132	-	

	carbon			Small
				2017, 13, 17014874
Ea Ca NiSa	carbon fiber	02	245	Adv. Mater.
Fe,Co-NiSe ₂	cloth	92	@200mAcm ⁻²	2018, 30, 1802121 ⁵
NPC -		177		Adv. Energy Mater.
nise	Ni Ioam	177	-	$2018, 8, 1702704^6$
			270	Angew. Chem.
NiSe	Ni foam	96	$\bigcirc 20 \dots \Lambda \dots n^2$	Int. Edit.
			@20mAcm ²	2015,54, 93517
NI: D	Glassy	220	200	Energy Environ. Sci
NI ₂ P	carbon	220	290	2015,8, 2347 ⁸
N::/NI: D	Ni foom	120	270	Adv. Funct. Mater.
1NI/1N18F 3	N1 foam	130	@30mAcm ⁻²	2016, 26,33149
NiSe Ni Se	Carbon	101	121	Small
1115e-111 _{0.85} 5e	Paper	101	151	2018, 14, 1800763 ¹⁰
CD@N; D	Carbon	117	250	Adv. Funct. Mater.
	Fiber Paper	117	230	2016, 26, 406711
N; D	Ti plate	234		Chem. Commun.
141901 10	Tiplate	234		2018, 54, 12408 ¹²
O V N; P	Glassy	108		Nano Energy
	carbon	108	-	2018,54,8213
EG/Ni ₃ Se ₂	graphene	170	230	Nano Lett.
/C0 ₉ S ₈	foil	@20mAcm ⁻²	@50mAcm ⁻²	2017, 17, 420214
	Glassy	104		Nat. Commun.
0-C03e ₂ r	carbon	104	-	2018, 9, 2533 ¹⁵
NixCo ₃ -xS ₄ /	Ni foam	126	250	Nano Energy
Ni ₃ S ₂	NI toam 136		238	2017,35,16116
Ma	Ni foom	120	215	Electrochim. Acta
14102		130		2019,298, 30517

		125	220	J. Energy Chem. 2021,60,194
C0 _{0.9} Fe _{0.1} -Se	INI IOalii	123	229	20118
N;So/DCO	Ni mesh	102	-	J. Mater. Chem. A
NISe/KGO				2016,4,14789 ¹⁹
NI ^I C.	Ti foam	100	-	Nanoscale
NISe ₂				2016,8,3911-3915 ²⁰
NPC	Glassy	190		ACS Appl. Mater. Inter.
NiSe ₂ nanoparticles	carbon		-	2016,8,5327-5334 ²¹
E. NºC.	N: from	163	265	J. Mater. Chem. A
Fe _{7.4%} -NiSe	N1 foam			2019,7,2233-224122

Table. S2. Comparison of OER catalytic performance of Ni-P/NiSe_x/NF with other recently reported non-precious metal electrocatalysts in 1 mol/L KOH solution.

Catalyst	Catalyst Substrate		Reference
Ni-P/NiSe _x	Ni foam	320	This work
Co _{0.9} Fe _{0.1} -Se	Ni foam 287		J. Energy Chem. 2021,60,194-201
Co.P/CoNPC	Glassy carbon	326@10	Adv. Mater.
	Classy carbon	520@10	2020,32,2003649.
O CaP	C11	210@10	Adv. Funct. Mater.
0-Cor	Glassy carbon	510@10	2020,30,1905252.
N:C-	T: from	205/020	ACS Appl. Mater. Inter.
NiSe ₂	11 10411	293@20	2016,8,4718
			ACS Sustainable Chem.
Co-NiSe	Ni foam	330@50	Eng. 2019,7,19257- 19267
Co.S.@NiCo-I DH	Ni foam	330	Sci. Bull. 2019,64
	TVI IOdili	550	(3),158-165
Co _{0.13} Ni _{0.87} Se ₂	Ti foam	320	Nanoscale 2016;8:3911- 3915

P-NiS-500	Ni foam	350	Chem. Eng. J.
1 1002 000	TTTTOUTT	550	2021,420,127630
Ni Sa nanafarast	NI: fa ana	353	Nano Energy,
1V13SC2 Handlof est	INI IOaiii	555	2016,24,103-110
NiSe nanowire film	Ni foam	270@20	Angew. Chem. Int. Ed.
			2015,54,9351-9355
Ni _x P _y	Carbon fiber	220@10	ACS Appl. Mater. Inter.
	paper	320/010	2016,8,10826-10834
N:D	Ni foom	250/@50	J. Energy Chem.
INIE	INI IOalli	330@30	2017,26,1196-1202

Table S3. Comparison cell voltage of hierarchical Ni-P/NiSe $_x$ /NF with otherbifunctional electrocatalysts in 1 mol/L KOH solution.

Catalyst	Substrate	cell voltage (V) @ j=10 mA·cm ⁻²	Reference
Ni-P/NiSe _x	Ni foam	1.536	This work
NiSe-Ni0.85Se	Carbon fiber paper	1.62	Small 2018,14,1800763
Co _{0.85} Se/FeNi-LDH	Graphene foil	1.67	Energ. Environ. Sci., 2016,9(2),478-483
NiCo ₂ S ₄ /NiFe-LDH	Ni foam	1.60	ACS Appl. Mater. Inter. 2017,9(18),15364-15372
Co _{0.9} Fe _{0.1} -Se	Ni foam	1.55	J. Energy Chem. 2021,60,194-201
C03S4@NiCo-LDH	Ni foam	1.59	New J. Chem. 2021,45,15429
Co _{0.75} Ni _{0.25} Se	Ni foam	1.60	Nanoscale 2019,11,7959-7966
NiCoSe ₂	Carbon cloth	1.62	J. Mater. Chem. A 2018,6,17353-17360
Ni ₈ P ₃	Ni foam	1.61	J. Am. Chem. Soc. 2016,26,3314-3323
Ni ₂ P	Glassy carbon	1.63	Energy Environ. Sci. 2015,8,2347-2351
NiP	Ni foam	1.63	J. Energy Chem. 2017,26,1196-1202
Porous Co _{0.75} Ni _{0.25} (OH) ₂ nanosheets	Carbon fiber paper	1.56	Small 2019,15,1804832

References

1. Hou, Y.; Qiu, M.; Zhang, T.; Zhuang, X.; Kim, C. S.; Yuan, C.; Feng, X. *Adv. Mater.* **2017**, *29* (35), 1701589.

- 2. Xu, R.; Wu, R.; Shi, Y.; Zhang, J.; Zhang, B. Nano Energy. 2016, 24, 103-110.
- 3. Wang, C.; Zhang, P.; Lei, J.; Dong, W.; Wang, J. Electrochim. Acta. 2017, 246, 712-719.
- 4. Li, H.; Chen, S.; Lin, H.; Xu, X.; Yang, H.; Song, L.; Wang, X. Small. 2017, 13 (37), 1701487.

5. Sun, Y.; Xu, K.; Wei, Z.; Li, H.; Zhang, T.; Li, X.; Cai, W.; Ma, J.; Fan, H. J.; Li, Y. *Adv. Mater.* **2018**, *30* (35), 1802121.

6. Wu, H.; Lu, X.; Zheng, G.; Ho, G. W. Adv. Energy Mater. 2018, 8 (14), 1702704.

7. Tang, C.; Cheng, N.; Pu, Z.; Xing, W.; Sun, X. Angew. Chem. Int. Ed. 2015, 54 (32), 9351-5.

8. Stern, L.-A.; Feng, L.; Song, F.; Hu, X. Sci. 2015, 8 (8), 2347-2351.

9. Chen, G.-F.; Ma, T. Y.; Liu, Z.-Q.; Li, N.; Su, Y.-Z.; Davey, K.; Qiao, S.-Z. Adv. Funct. Mater. 2016, 26 (19), 3314-3323.

10. Chen, Y.; Ren, Z.; Fu, H.; Zhang, X.; Tian, G.; Fu, H. NiSe-Ni_{0.85}Se Heterostructure Nanoflake Arrays on Carbon Paper as Efficient Electrocatalysts for Overall Water Splitting. *Small.* **2018**, *14* (25), 1800763.

11. Wang, X.; Li, W.; Xiong, D.; Petrovykh, D. Y.; Liu, L. Adv. Funct. Mater. 2016, 26 (23), 4067-4077.

12. Liu, Q.; Tang, C.; Lu, S.; Zou, Z.; Gu, S.; Zhang, Y.; Li, C. M. Chem. Comm. 2018, 54 (87), 12408-12411.

13. Dinh, K. N.; Sun, X.; Dai, Z.; Zheng, Y.; Zheng, P.; Yang, J.; Xu, J.; Wang, Z.; Yan, Q. Nano Energy. 2018, 54, 82-90.

14. Hou, Y.; Qiu, M.; Nam, G.; Kim, M. G.; Zhang, T.; Liu, K.; Zhuang, X.; Cho, J.; Yuan, C.; Feng, X. *Nano Lett.* **2017**, *17* (7), 4202-4209.

15. Zheng, Y. R.; Wu, P.; Gao, M. R.; Zhang, X. L.; Gao, F. Y.; Ju, H. X.; Wu, R.; Gao, Q.; You, R.; Huang, W. X.; Liu, S. J.; Hu, S. W.; Zhu, J.; Li, Z.; Yu, S. H. *Nat .Commun.* **2018**, *9* (1), 2533.

16. Wu, Y.; Liu, Y.; Li, G.-D.; Zou, X.; Lian, X.; Wang, D.; Sun, L.; Asefa, T.; Zou, X. *Nano Energy*. **2017**, *35*, 161-170.

- 17. Xing, J.; Li, Y.; Guo, S.; Jin, T.; Li, H.; Wang, Y.; Jiao, L. Electrochim. Acta. 2019, 298, 305-312.
- 18. Ren, H.; Yu, L.; Yang, L.; Huang, Z.; Kang, F.; Lv, R. J. Energy Chem. 2021, 60,194-201.
- 19. Li, X.; Zhang, L.; Huang, M.; Wang, S.; Li, X.; Zhu, H. J. Mater. Chem. A. 2016, 4, 14789.

20. Liu, T.; Asiri, A. M.; Sun, X. Nanoscale. 2016, 8, 3911-3915.

21. Kwak, I. H.; Im, H. S.; Jang, D. M.; Kim, Y. W.; Park, K.; Lim, Y. R.; Cha, E. H.; Park, J. ACS Appl. Mater. Interfaces. 2016, 8, 5327-5334.

22. Zou, Z.; Wang, X.; Huang, J.; Wu, Z.; Gao, F. J. Mater. Chem. A. 2019, 7, 2233-2241.