Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary Information

Highly sensitive colorimetric detection and effective adsorption of phosphate based on MOF-808(Zr/Ce)

Yuzhu Zhai^{a,b}, Yijing Li^{a,b*}, Qin Hou^{a,b}, Yuanhong Zhang^{a,b}, Enlong Zhou^{a,b}, Houshen Li^{a,b*}, and Shiyun Ai^{a,b}

^a College of Chemistry and Material Science, Shandong Agricultural University, Taian,

Shandong, 271018, PR China.

^b Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong 271018, PR China.

* Corresponding authors.

Fig. S1 FTIR spectra of H_3BTC and MOF-808(Zr/Ce).

Fig. S2 UV–vis spectra of (a) TMB solution, (b) TMB + MOF-808(Zr) solution, (c) TMB + MOF-808(Zr/Ce) solution, (d) TMB + MOF-808(Zr/Ce) solution + phosphate solution, (e) TMB + MOF-808(Ce) solution. (Reaction conditions: TMB concentration: 186 μ M; catalyst: 279 mg mL⁻¹; incubation time: 10 min).

Fig. S3 The underlying process for MOF-808(Zr/Ce) catalyze oxidize TMB reaction.

Fig. S4 Effect of the ratio of Zr^{4+}/Ce^{4+} for phosphate detection. The left Y-axis represent A_{654} of the mixture in the absence and presence of phosphate The right Y-axis represent A_{pi} - A_0 (A_{pi} : A_{654} in the presence of phosphate; A_0 : A_{654} in the absence of phosphate.).

Fig. S5 Effect of (a) reaction time, (b) incubate temperature, (c) catalysts concentration, and (d) pH for Pi detection. The left Y-axis represent A_{654} of the mixture in the absence and presence of Pi. The right Y-axis represent A_{pi} -A₀ (A_{pi} : A_{654} in the presence of Pi; A₀: A_{654} in the absence of Pi.). Reaction conditions: concentration of TMB is 186 μ M.

Fig. S6 EPR spectra of MOF-808(Zr/Ce) (a) in the absence and (b) in the presence of phosphate.

Fig. S7 Phosphate adsorption plot of $\ln K^{\Theta}$ versus 1/T for estimation of thermodynamic parameters.

Fig. S8 Effects of the pH on phosphate adsorption of MOF-808(Zr/Ce). The initial pH value is 2.5, 4.2, 6, 7.8, and 10.4. The pH value is 5.1 when the concentration of Pi is $50 \text{ mg } \text{L}^{-1}$.

Fig. S9 XRD spectra of MOF-808(Zr/Ce) and MOF-808(Zr/Ce) +Pi.

Fig. S10 SEM image of MOF-808(Zr/Ce) after phosphate adsorption.

Fig. S11 BET isotherms of MOF-808(Zr/Ce) before and after phosphate adsorption.

Fig. S12 Reusability of MOF-808(Zr/Ce) for P (50 mg \cdot L⁻¹, 10 h) adsorption from water after NaOH washing.

Element	1	Atomic % 2	3	Mean %
С	41.49	47.35	45.83	44.89
О	43.47	41.11	41.22	41.93
Zr	8.48	6.33	7.02	7.28
Ce	6.56	5.22	5.92	5.90

Table S1 EDS elemental analysis of MOF-808(Zr/Ce).

Material	Method	Linear range (µM)	LOD (µM)	Ref.
MS-Ag nanoplates	Colorimetric	6.1-183	2	1
Eu/Ce/UiO-66-(COOH) ₂	Fluorescent	0.3-20	0.247	2
Mn-ZnS-QDs/Ce ³⁺ nanohybrids	Fluorescent	scent 8-320		3
Au NPs-CTAB	Luminescence	11.7-750	3.8	4
Reagentless paper-based	Electrochemical	Up to 300	4	5
Oxidized UiO-66(Ce/Zr)	Colorimetric	33.3-666.7	11.1	6
MOF-808(Zr/Ce)	Colorimetric	11-581	3.7	This work

Table S2 List of phosphate detection performance by different material and method.

Kinetic models parameters	
Pseudofirst-order kinetic	
$q_{\rm e}({ m mg~g^{-1}})$	14.9
$k_1 ({\rm min}^{-1})$	0.0089
\mathbb{R}^2	0.974
Pseudosecond-order kinetic	
$q_{\rm e} ({ m mg \ g^{-1}})$	23.7
$k_2 (g mg^{-1} min^{-1})$	0.0017
\mathbb{R}^2	0.9990
Intraparticle diffusion kinetic	
$k_{\rm p,1}~({\rm g~mg^{-1}~min^{-1/2}})$	1.70333
\mathbb{R}^2	0.95966
$k_{\rm p,2}~({\rm g~mg^{-1}~min^{-1/2}})$	0.56232
\mathbb{R}^2	0.94611
$k_{\rm p,3}~({\rm g~mg^{-1}~min^{-1/2}})$	0.00888
\mathbb{R}^2	0.67726

Table S3 Kinetic model parameters of MOF-808(Zr/Ce) for phosphate adsorption.

Isotherm models parameters	298 K	308 K	318 K
Langmuir	298 K	308 K	318 K
$q_{ m m} ({ m mg \ g^{-1}})$	54.9	65.1	68.5
$K_{\rm L}$ (L mg ⁻¹)	0.054	0.062	0.070
R ²	0.97966	0.98239	0.98202
Freundlich	298 K	308 K	318 K
$K_{\rm F}(({ m mg}{\cdot}{ m g}{\cdot}{ m l}^{-1})\cdot({ m L}{ m mg}{ m -}{ m l})^{1/{ m n}})$	9.60	11.42	13.28
1/ <i>n</i>	0.35	0.36	0.34
R ²	0.95616	0.96441	0.97442
Temkin	298 K	308 K	318 K
B_{T}	10.21	12.18	11.88
$K_{\rm T}$ (L mg ⁻¹)	0.89	1.03	1.43
b_{T} (J mol ⁻¹)	242.68	211.25	222.56
R ²	0.91992	0.92963	0.92836

Table S4 Parameters of isotherm models of MOF-808(Zr/Ce) for phosphate adsorption.

<i>T</i> (K)	К ^Ө	$\Delta G^{\Theta} (\text{kJ mol}^{-1})$	ΔH^{Θ} (kJ mol ⁻¹)	$\Delta S^{\Theta} (J \text{ mol}^{-1} \mathbf{K}^{-1})$
298	1674	-9.91		
308	1922	-10.52	8.52	61.83
318	2077	-11.14		

Table S5 Thermodynamic parameters of phosphate adsorption onto MOF-808(Zr/Ce).

Adsorbent	$q_e (\mathrm{mg} \mathrm{P} \mathrm{g}^{-1})$	рН	Temperature (°C)	Reference
Fe ₃ O ₄ /lignin bio-activated carbons	21.18	7	25	[7]
La/Fe ₃ O ₄ -BC	10.82	6.5	25	[8]
NH ₂ -MIL-100(Fe)	32.14	7	20	[9]
Fe ₃ O ₄ @MgAl-LDH@La(OH) ₃	66.5	7	25	[10]
UiO-66-NH ₂	50.5	5.5	40	[11]
MOF-808(Zr/Ce)	54.9	5.1	25	This work

Table S6 Adsorption capacity of phosphate on MOF-808(Zr/Ce) and other adsorbents.

Reference

[1] C. Pinyorospathum, P. Rattanarat, S. Chaiyo, W. Siangproh, and O. Chailapakul, Colorimetric sensor for determination of phosphate ions using anti-aggregation of 2-mercaptoethanesulfonate-modified silver nanoplates and europium ions, *Sensor. Actuat. B-Chem.*, 2019, **290**, 226-232.

[2] C. Gong, Z. Li, G. Liu, and S. Pu, Ratiometric fluorescent sensing for phosphate based on Eu/Ce/UiO-66-(COOH)₂ nanoprobe, *Spectrochim. Acta A*, 2021, 252, 119493.

[3] J. Qin, D. Li, Y. Miao, and G. Yan, Detection of phosphate based on phosphorescence of Mn doped ZnS quantum dots combined with cerium(iii), *RSC Adv.*, 2017, **7**, 46657-46664.

[4] A .A. Fadhel, M. Johnson, K. Trieu, E. Koculi, and A. D. Campiglia, Selective nano-sensing approach for the determination of inorganic phosphate in human urine samples, *Talanta*, 2017, **164**, 209-215.

[5] S. Cinti, D. Talarico, G. Palleschi, D. Moscone, F. Arduini, Novel reagentless paperbased screen-printed electrochemical sensor to detect phosphate, *Anal. Chim. Acta*, 2016, **919**, 78-84.

[6] X. Li, X. Niu, P. Liu, X. Xu, D. Du, and Y. Lin, High-performance dual-channel ratiometric colorimetric sensing of phosphate ion based on target-induced differential oxidase-like activity changes of Ce-Zr bimetal-organic frameworks, *Sensor. Actuat. B-Chem.*, 2020, **321**, 128546.

[7] T. Han, X. Lu, Y. Sun, J. Jiang, W. Yang, and P. G. Jonsson, Magnetic bio-activated carbon production from lignin via a streamlined process and its use in phosphate removal from aqueous solutions, *Sci. Total Environ.*, 2020, **708**, 135069.

[8] L. Wang, J. Wang, C. He, W. Lyu, W. Zhang, W. Yan, and L. Yang, Development of rare earth element doped magnetic biochars with enhanced phosphate adsorption performance, *Colloid. Surface. A*, 2019, **561**, 236-243.

[9] Q. Xie, Y. Li, Z. Lv, H. Zhou, X. Yang, J. Chen, and H. Guo, Effective Adsorption and Removal of Phosphate from Aqueous Solutions and Eutrophic Water by Fe-based MOFs of MIL-101, *Sci. Rep.*, 2017, **7**, 3316.

[10] Z. Lin, and J. Chen, Magnetic Fe₃O₄@MgAl-LDH@La(OH)₃ composites with a hierarchical core-shell structure for phosphate removal from wastewater and inhibition of labile sedimentary phosphorus release, *Chemosphere*, 2021, **264**, 128551.

[11] X. Zhang, M. Liu, and R. Han, Adsorption of phosphate on UiO-66-NH₂ prepared by a green synthesis method, *J. Environ. Chem. Eng.*, 2021, **9**, 106672.