Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic Supplementary Information

belonging to the article

Moderate stability of scissor double fluorescent triple helix molecular switch for ultrasensitive Biosensing of crop transgene

Xiuling Chu,^{‡a} Desong Zhu,^{‡*b} Min Liu,^c Lingrang Kong,^d and Shiyun Ai ^b

^{*a*} Shandong Taian Ecological Environment Monitoring Center, Taian 271000, P. R. China.

^b Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, P. R. China.

^CShandong Qingdao Ecological Environment Monitoring Center, Qingdao 266000, P. R. China.

^dState Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271000, P. R. China.

Corresponding author:

E-mail: zhudesong@sdau.edu.cn; Fax: +86 538 8242251; Tel: +86 538 8241163.

Results:

Fig. S1 The effect of BHQ-1-TFO concentration.

Experimental conditions: 10 mM HAc-Ac- buffer (pH 5.0), 300 mM NaNO₃, 100 nM SB-3, (100-500) nM (BHQ-1-TFO-3)-3, 100 nM Bt gene, 1.5 h of self-assembly at 40 °C, 0.8 h of binding at 40 °C.

Fig. S2 The effect of quenching time.

Experimental conditions: 10 mM HAc-Ac- buffer (pH 5.0), 300 mM NaNO₃, 100 nM SB-3, 400 nM (BHQ-1-TFO-3)-3, 100 nM Bt gene, (0.5-2.5) h of quenching at 40 °C, 0.8 h of binding at 40 °C.

Fig. S3 The effect of binding time.

Experimental conditions: 10 mM HAc-Ac- buffer (pH 5.0), 300 mM NaNO₃, 100 nM SB-3, 400 nM (BHQ-1-TFO-3)-3, 100 nM Bt gene, 1.5 h of self-assembly at 40 °C, (0.1-0.9) h of binding at 40 °C.

Fig. S4 The specificity of the proposed method.

(1) The control experiment without Bt gene (2) Single-base mismatched DNA (SM-DNA-1), (3) SM-DNA-2, (4) SM-DNA-3, (5) three-base mismatched DNA (TM-DNA), (6) Bt gene.

Experimental conditions: 10 mM HAc-Ac- buffer (pH 5.0), 300 mM NaNO₃, 100 nM SB-3, 400 nM (BHQ-1-TFO-3)-3, 100 nM (single-base mismatched DNA, three-base mismatched DNA and Bt gene), 1.5 h of self-assembly at 40 °C, 0.8 h of binding at 40 °C.

Fig. S5 The relationship between fluorescence intensity and the concentration of KRAS gene.

Experimental conditions: 10 mM HAc-Ac- buffer (pH 5.0), 300 mM of NaNO₃, 100 nM SB-3, 400 nM (BHQ-1-TFO-2)-3, (2 pM to 10 nM) KRAS gene, 1.5 h of self-assembly at 40 °C, 0.8 h of binding at 40 °C. The error bars showed the standard deviation of three replicate determinations.

Name	Sequences (5'-3')
SB-1	<u>TTTTTTTTTTTT</u> GAGGTGCTGCCGCTGCCGAAGTGCGCTGG
	T <u>TTTTTTTTTTTTT</u>
SB-2	<u>CCCCCCCCCCCC</u> GAGGTGCTGCCGCTGCCGAAGTGCGCTG
	GT <u>CCCCCCCCCCCC</u>
SB-3	<u>TCTCTCTCTCTCC</u> GAGGTGCTGCCGCTGCCGAAGTGCGCTG
	GT <u>CTCTCTCTCTCTCT</u>
(BHQ-1-TFO-1)-1	AAAAAA
(BHQ-1-TFO-2)-1	AAAAAAA
(BHQ-1-TFO-3)-1	AAAAAAAAA
(BHQ-1-TFO-4)-1	AAAAAAAAAAA
(BHQ-1-TFO-5)-1	AAAAAAAAAAAAA
(BHQ-1-TFO-1)-2	GGGGGG
(BHQ-1-TFO-2)-2	GGGGGGGG
(BHQ-1-TFO-3)-2	GGGGGGGGGG
(BHQ-1-TFO-4)-2	GGGGGGGGGGGG
(BHQ-1-TFO-5)-2	GGGGGGGGGGGGGG
(BHQ-1-TFO-1)-3	AGAGAG
(BHQ-1-TFO-2)-3	AGAGAGAG
(BHQ-1-TFO-3)-3	AGAGAGAGAG
(BHQ-1-TFO-4)-3	AGAGAGAGAGAG
(BHQ-1-TFO-5)-3	AGAGAGAGAGAGAG
Bt gene	ACCAGCGCACTTCGGCAGCGGCAGCACCTC
SM-DNA-1	ACCAGC <u>C</u> CACTTCGGCAGCGGCAGCACCTC
SM-DNA-2	ACCAGCGCACTTCGG <u>G</u> AGCGGCAGCACCTC
SM-DNA-3	ACCAGCGCACTTCGGCAGCGGCAGC <u>T</u> CCTC
TM-DNA	ACCAGC <u>C</u> CACTTCGGC <u>T</u> GCGGCAGCAC <u>G</u> TC

Table S1. Sequences of oligonucleotides in this study

T-MB TCTCTCTCCGAGGTGCTGCCGCCGAAGTGCGCTGGT GAGAGAGAGA

KRAS gene AG CTG GTG GCG TAG GCA AGA G

(The underlined regions in SB (SB-1, SB-2 and SB-3) denote the two homopyrimidine strands at both ends (the components of the scissor DFTHMS). The italics areas regions in (SB-1, SB-2 and SB-3 as well as T-MB) denote the complementary sequences of Bt gene. The underlined regions in SM-DNA and TM-DNA denote the mismatched bases. The boldface regions in T-MB (traditional molecular beacon) denote the complementary sequence of the neck.