Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

IL-functionalized Mn(II) -doped core-shell Fe₃O₄@ Zr-MOF nanomaterials for removal MB from wastewater based on dual adsorption/Fenton catalysis

Ruowei Lu, ^a Cuijuan Wang, ^a *Yanxia Chen, ^a Lichuan Tan, ^a Peng Wang, ^a and Siwen Feng ^a

^a Department of Chemistry and Chemical Engineering, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, PR China *Corresponding Author

Figures and tables

Figure. S1. (a) PXRD patterns and (b) FT-IR spectra of NH₂-UiO-66.

Figure. S2. EDS spectrum of the obtained MFC@Mn-NH₂-UiO-66 and MFC@Mn-NH₂-UiO-66@IL magnetic composites.

Figure. S3. XPS spectra of MFC@Mn-NH₂-UiO-66@IL.

Figure. S4. (a) SEM and (b) TEM images of NH₂-UiO-66.

Figure. S5. The pore size distribution of NH₂-UiO-66, MFC@Mn-NH₂-UiO-66 and MFC@Mn-NH₂-UiO-66@IL nanocomposites.

Figure. S6. (a) Kinetics plot of the pseudo first-order, and (b) intra-particle diffusion kinetic model for MB adsorption.

Figure. S7. Adsorption isotherm of (a) Langmuir, and (b) Freundlich model for MB removal by MFC@Mn-NH₂-UiO-66@IL.

Figure. S8. Before and after comparison of adsorption/catalytic MB.

Figure. S9. Recycle efficiency of MFC@Mn-NH2-UiO-66@IL over three cycles.

Figure. S10. (a)FT-IR spectra and (b)PXRD patterns MFC@Mn-NH₂-UiO-66@IL composite before and after adsorption of MB.

Figure. S11. XPS spectra of the recycled MFC@Mn-NH₂-UiO-66@IL: (a) The survey spectrum; (b) XPS Zr 3d spectrum.

Table. S1. Element components of MFC@Mn-NH_2-UiO-66, and MFC@Mn-NH_2-UiO-66@IL.

Samples	C (wt%)	Zr (wt%)	O (wt%)	F (wt%)	Fe (wt%)	N (wt%)	P (wt%)	Mn (wt%)
MFC@Mn- NH ₂ -UiO-66	41.51	24.46	15.95	-	11.4	4.07	-	1.05
IL@MFC@Mn -NH ₂ -UiO-66	31.21	23.28	21.62	7.68	6.41	7.44	1.53	0.66

Samples	$S_{BET}(m^2 \cdot g^{-1})$	$V_{pore}(cm^3 \cdot g^{-1})$			
NH ₂ -UiO-66	1264.30	0.54			
MFC@Mn-NH ₂ -UiO-66	699.25	0.46			
MFC@Mn-NH ₂ -UiO-66@IL	30.31	0.06			

Table. S2. BET surface areas and t-plot micropore volumes of samples.

Table. S3. Intra-particle diffusion model parameters for the adsorption of MB dye onto MFC@Mn-NH₂-UiO-66@IL composite

	First step			Second step			Third step		
	K _{id, 1}	C.		K _{id, 2}			K _{id, 2}	C.	
$C_0(mg \cdot L^{-1})$	(mg g ⁻	(ma·I -	P ²	(mg g-	C_2	P ²	(mg g-	(mg:	P ²
	¹ min ⁻		К	¹ min ⁻	$(mg \cdot L^{-1})$	K	¹ min ⁻	(IIIg I -1)	К
	0.5)	-)		0.5)			0.5)	L ')	
$50 \text{ mg} \cdot \text{L}^{-1}$	57.69	-76.25	0.98	6.09	196.86	0.67	1.58	156.48	0.94
100 mg·L ⁻¹	36.72	-48.33	0.98	0.51	116.35	0.88	0.25	112.72	0.98

Table. S4. R_L values for the adsorption of MB dye.

$C_0(mg \cdot L^{-1})$	10	20	40	60	80	100	150	200
R _L	0.20	0.11	0.06	0.04	0.03	0.025	0.016	0.012