Supporting Information

Synthesis of 3-substituted quinolines by ruthenium-catalyzed aza-Michael addition and intramolecular annulation of enaminones with anthranils

Kelu Yan,*[‡] Min Liu,[‡] Jiangwei Wen, Xiao Liu, Xiaoyu Wang, Xinlei Sui,

Wenda Shang and Xiu Wang*

Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China

E-mail: <u>yankl@qfnu.edu.cn</u>, <u>wangx@qfnu.edu.cn</u>

‡ These authors contributed equally to this work

Contents

S2
S3
S3–S5
S5
S5
S5–S6
S5
S6
S6-S14
S14–S16
S17–S19
S17
S17–S18
S18–S19
S19
S20-S51

1. Experimental Section:

General Considerations. All products were prepared under argon atmosphere using standard Schlenk technique. ¹H, ¹³C NMR, and ¹⁹F NMR data were recorded with Bruker Advance III (500 MHz) spectrometers with tetramethylsilane as an internal standard. All chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. All chemical shifts are reported relative to tetramethylsilane and d-solvent peaks, respectively. Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), triplet (t), quartet (q), and multiplet (m). Column chromatography was performed on silica gel 200–300 mesh. Analytical thin-layer chromatography (TLC) was performed on pre-coated, glass-backed silica gel plates. Visualization of the developed chromatogram was performed by UV absorbance (254 nm). High-resolution mass spectra (HRMS) were done on Varian 7.0 T FTICR-mass spectrometer. Unless otherwise noted below, all other compounds have been reported in the literature or are commercially available from Aldrich, Acros, Alfa Aesar, and Energy Chemical Company and used as received without any further purification.

$ \begin{array}{c} $				
Entry	Catalyst	Additive	Solvent	Yield $(\%)^b$
1	[(<i>p</i> -cymene)RuCl ₂] ₂	HOAc	DCE	84
2	[(<i>p</i> -cymene)RuCl ₂] ₂	NaOAc	DCE	6
3	[(<i>p</i> -cymene)RuCl ₂] ₂	PivOH	DCE	55
4	[(<i>p</i> -cymene)RuCl ₂] ₂	1-AdCOOH	DCE	46
5	[(<i>p</i> -cymene)RuCl ₂] ₂	MesCOOH	DCE	37
6	[(<i>p</i> -cymene)RuCl ₂] ₂	-	DCE	12
7	[(<i>p</i> -cymene)RuCl ₂] ₂	HOAc	THF	57
8	[(<i>p</i> -cymene)RuCl ₂] ₂	HOAc	МеОН	66
9	[(p-cymene)RuCl ₂] ₂	HOAc	MeCN	90
10	[(<i>p</i> -cymene)RuCl ₂] ₂	HOAc	DMF	63

2. Table S1. Optimization studies^a

11	[(<i>p</i> -cymene)RuCl ₂] ₂	HOAc	Toluene	59
12	-	HOAc	MeCN	0
13	-	HOAc	DMSO	0
14	RuCl ₃	HOAc	MeCN	38
15	FeCl ₃	HOAc	MeCN	15
16	CuCl ₂	HOAc	MeCN	29
17	BiOTf ₃	HOAc	MeCN	43
18	InOTf ₃	HOAc	MeCN	31
19	[Cp*RhCl ₂] ₂	HOAc	MeCN	22
20	$[(p-cymene)RuCl_2]_2$	HOAc	MeCN	81 ^c

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), catalyst (5 mol%), additive (1 equiv), solvent (1.5 mL), 120 °C, 12 h, under N₂. ^{*b*} Isolated yields. ^{*c*} 100 °C.

Initially, (E)-3-(dimethylamino)-1-phenylprop-2-en-1-one (1a) (0.2 mmol, 1.0 equiv) was introduced to react with benzo[c]isoxazole (2a) (0.3 mmol, 1.5 equiv) accompanied by [(p-cymene)RuCl₂]₂ (5 mol%) and HOAc (1 equiv) in 1,2dichloroethane (DCE) at 120 °C under a nitrogen atmosphere for 12 h. The target product phenyl(quinolin-3-yl)methanone (3aa) was achieved with a yield of 84% (Table S1, entry 1). The structure of **3aa** was confirmed by its ¹H and ¹³C NMR spectra. Several other additives including NaOAc, PivOH, 1-AdCOOH and MesCOOH were first tested, and generated **3aa** in 6-84% yields (entries 2-5). When no additive was added to the reaction, the product **3aa** could be obtained only in 12% yield (entry 6). Then, several tests on solvents showed that CH₃CN is more suitable for this transformation than tetrahydrofuran (THF), CH₃OH, N,N-dimethylformamide (DMF) and toluene (entries 7–11). The yields of **3aa** were not higher than 43% when no [(p-cymene)RuCl₂]₂ or other catalysts such as RuCl₃, FeCl₃, CuCl₂, BiOTf₃, InOTf₃ and [Cp*RhCl₂]₂ were used in the reactions with CH₃CN or dimethyl sulfoxide (DMSO) as the solvent (entries 12-19). In this reaction, a good catalyst should not only have a good complexation with the carbonyl group of enaminones, but also dissociate at an appropriate time. Other catalysts may be not as good as [(pcymene)RuCl₂]₂ in meeting these two requirements, and gave lower yields of target

product. In addition, when the reaction temperature reduced to 100 °C, the yield of product **3aa** decreased at the same time (entry 20). Therefore, the factors of entry 9 were selected as the standard conditions.

3. Synthetic Procedures

General Procedure for the Ru(II)-Catalyzed Preparation of 3

A mixture of substituted enaminones (1) (0.2 mmol, 1.0 equiv), anthranils (2) (0.3 mmol, 1.5 equiv) and $[Ru(p-cymene)Cl_2]_2$ (6.0 mg, 0.01 mmol, 5 mol%) were weighted in a Schlenk tube equipped with a stir bar. Dry CH₃CN (1.5 mL) and HOAc (0.2 mmol, 1.0 equiv) were added and the mixture was stirred at 120 °C in a pre-heated oil bath for 12 h under N₂ atmosphere. Then, the mixture was cooled to room temperature and concentrated in vacuo and the resulting residue was purified by column chromatography on silica gel with EtOAc/petroleum ether.

4. Gram-Scale Preparation and Derivatization Reactions of 3a

(a) Gram-Scale Preparation of 3a

A mixture of (*E*)-3-(dimethylamino)-1-phenylprop-2-en-1-one (**1a**) (1050.6 mg, 6.0 mmol, 1.0 equiv), benzo[*c*]isoxazole (**2**) (9 mmol, 1.5 equiv) and $[Ru(p-cymene)Cl_2]_2$ (0.3 mmol, 5 mol%) were weighted in a Schlenk sealed tube equipped with a stir bar. Dry CH₃CN (20 mL) and HOAc (6 mmol, 1.0 equiv) were added and the mixture was stirred at 120 °C in a preheated oil bath for 12 h under N₂ atmosphere. Then, the mixture was cooled to room temperature and concentrated in vacuo and the resulting residue was purified by flash column chromatography on silica gel with EtOAc/petroleum ether, the product **3aa** was affored as a yellow solid in 84% yield (1.176 g, 5.04 mmol).

(b) Derivatization Reaction of 3a for the Preparation of 4

A mixture of phenyl(quinolin-3-yl)methanone (**3aa**) (0.2 mmol, 1.0 equiv) and NaBH₄ (0.28 mmol, 1.4 equiv) in MeOH was stirred at 0 °C for 3 hours. Then the residual was extracted with CH_2Cl_2 and concentrated in vacuo and the resulting residue was purified by flash column chromatography on silica gel with EtOAc/petroleum ether to give product **4** in 90% yield (42.3 mg, 0.18 mmol).

5. Characterization of 3-4

phenyl(quinolin-3-yl)methanone (3aa)¹

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 90% yield (42.0 mg,

0.180 mmol). ¹**H NMR (CDCl₃, 500 MHz):** δ 9.32 (d, *J* = 2.0 Hz, 1H), 8.54 (d, *J* = 1.8 Hz, 1H), 8.18 (d, *J* = 8.5 Hz, 1H), 7.91 (d, *J* = 8.0 Hz, 1H), 7.87 – 7.82 (m, 3H), 7.66 – 7.60 (m, 2H), 7.53 (t, *J* = 7.7 Hz, 2H). ¹³**C NMR (CDCl₃, 125 MHz):** δ 194.8, 150.3, 149.4, 138.7, 137.0, 133.0, 131.8, 130.0, 130.0, 129.5, 129.1, 128.6, 127.5, 126.6.

quinolin-3-yl(p-tolyl)methanone (3ba)¹

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 93% yield (45.9

mg, 0.186 mmol). ¹**H NMR (CDCl₃, 500 MHz):** δ 9.31 (s, *J* = 1.9 Hz, 1H), 8.55 (s, *J* = 1.9 Hz, 1H), 8.20 (d, *J* = 8.5 Hz, 1H), 7.92 (d, *J* = 8.1 Hz, 1H), 7.87-7.84 (m, 1H), 7.79 (d, *J* = 8.1 Hz, 2H), 7.66 – 7.62 (m, 1H), 7.35 (d, *J* = 7.9 Hz, 2H), 2.48 (s, 3H). ¹³**C NMR (CDCl₃, 125 MHz):** δ 194.6, 150.4, 149.4, 144.1, 138.6, 134.4, 131.7, 130.5, 130.3, 129.5, 129.4, 129.1, 127.5, 126.7, 21.72.

(4-tert-butylphenyl)(quinolin-3-yl)methanone (3ca)²

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 92% yield (53.2 mg, 0.184 mmol). ¹H NMR (CDCl₃, 500 MHz): δ 9.32 (d, J = 2.0 Hz, 1H), 8.56 (d, J = 1.8 Hz, 1H), 8.20 (d, J = 8.5 Hz, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.86 – 7.81 (m, 3H), 7.63 (t, J = 7.5 Hz, 1H), 7.57 – 7.54 (m, 2H), 1.39 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 194.5, 157.0, 150.3, 149.3, 138.6, 134.3, 131.7, 130.47, 130.1, 129.4, 129.1, 127.5, 126.6, 125.6, 35.2, 31.1.

(4-methoxyphenyl)(quinolin-3-yl)methanone (3da)¹

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 89%

yield (47.0 mg, 0.178 mmol). ¹**H NMR (CDCl₃, 500 MHz):** δ 9.30 (s, 1H), 8.55 (s, 1H), 8.20 (d, *J* = 8.5 Hz, 1H), 7.92 (d, *J* = 8.1 Hz, 1H), 7.85 (t, *J* = 7.5 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 2H), 7.64 (t, *J* = 7.5 Hz, 1H), 7.34 (d, *J* = 7.9 Hz, 2H), 2.47 (s, 3H).¹³**C NMR (CDCl₃, 125 MHz):** δ 194.5, 150.3, 149.3, 144.1, 138.6, 134.4, 131.7, 130.4, 130.3, 129.4, 129.3, 129.1, 127.5, 126.7, 21.71.

(4-fluorophenyl)(quinolin-3-yl)methanone (3ea)¹

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 90%

yield (45.1 mg, 0.180 mmol). ¹H NMR (CDCl₃, 500 MHz): δ 9.29 (d, J = 1.3 Hz, 1H), 8.53 (d, J = 1.9 Hz, 1H), 8.20 (d, J = 8.5 Hz, 1H), 7.95 – 7.89 (m, 3H), 7.88 – 7.85(m, 1H), 7.68 – 7.63 (m, 1H), 7.25 – 7.20 (m, 2H). ¹³C NMR (CDCl₃, 125 MHz): δ 193.4, 166.7 (d, J = 255.4 Hz), 150.1, 149.5, 138.6, 133.3 (d, J = 2.8 Hz), 132.7 (d, J = 9.4 Hz), 131.9, 130.0, 129.5, 129.1, 127.7, 126.6, 115.9 (d, J = 21.9 Hz). ¹⁹F NMR (CDCl₃,471 MHz): δ -104.6.

(4-chlorophenyl)(quinolin-3-yl)methanone (3fa)¹

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 88%

yield (47.1 mg, 0.176 mmol). ¹H NMR (DMSO-*d*₆, 500 MHz): δ 9.27 (s, 1H), 8.74 (s, 1H), 8.24 – 8.04 (m, 2H), 7.94 – 7.83 (m, 3H), 7.73 – 7.62 (m, 3H). ¹³C NMR (DMSO-*d*₆, 125

MHz): δ 193.4, 149.5, 148.9, 148.9, 138. 8, 138.1, 135.3, 132.1, 131.7, 129.8, 128.9, 128.8, 127.6, 126.4.

(4-bromophenyl)(quinolin-3-yl)methanone (3ga)¹

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 85% yield (52.9 mg, 0.170 mmol). ¹H NMR (CDCl₃, 500 MHz): δ 9.29 (s, 1H), 8.53 (d, J = 1.8Hz, 1H), 8.19 (d, J = 8.5 Hz, 1H), 7.92 (d, J = 7.9 Hz, 1H), 7.88 – (m, 1H), 7.76 – 7.72 (m, 2H), 7.70 – 7.63 (m, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 193.8, 150.0, 149.5, 138.7, 135.7, 132.0, 132.0, 131.5, 129.7, 129.5, 129.1, 128.3, 127.7, 126.5.

quinolin-3-yl(4-(trifluoromethyl)phenyl)methanone (3ha)¹

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 79%

vield (47.5 mg, 0.158 mmol). ¹H NMR (CDCl₃, 500 MHz): δ 9.33 (d, J = 1.9 Hz, 1H), 8.55 (d, J = 1.9 Hz, 1H), 8.21 (d, J = 8.5 Hz, 1H), 7.95 (dd, J = 18.8, 8.1 Hz, 3H), 7.90 - (m, 1H),7.82 (d, J = 8.2 Hz, 2H), 7.69 – 7.63 (m, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 193.8, 150.0, 149.7, 140.0, 139.1, 134.3 (q, J = 32.8 Hz), 132.3, 130.2, 129.6, 129.2, 127.8, 126.5, 125.7 (q, J = 3.7 Hz), 123.5 (q, J = 272.9 Hz). ¹⁹F NMR (CDCl₃, 471 MHz): δ -63.1.

(4-nitrophenyl)(quinolin-3-yl)methanone (3ia)³

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 65%

yield (36.1 mg, 0.130 mmol). ¹H NMR (CDCl₃, 500 MHz): δ 9.32 (d, J = 1.8 Hz, 1H), 8.55 (d, J = 1.9 Hz, 1H), 8.42 - 8.37 (m, 2H), 8.21 (d, J = 8.5 Hz, 1H), 8.03 - 7.99 (m, 2H), 7.94 (d, J = 8.5 Hz, 1H), 8.03 - 7.99 (m, 2H), 8.03 (m, 2H), 8.J = 8.2 Hz, 1H), 7.92 – (m, 1H), 7.70 – 7.66 (m, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 193.1 150.2, 149.8, 142.1, 139.2, 139.2, 132.5, 130.7, 129.6, 129.3, 128.8, 128.0, 126.4, 123.9, 102.8.

4-(quinoline-3-carbonyl)benzonitrile (3ja)²

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 51% yield (26.1 mg, 0.101 mmol). ¹H NMR (CDCl₃, 500 MHz): δ 9.28 (s, 1H), 8.51 (d, *J* = 1.5 Hz, 1H), 8.18 (d, *J* = 8.5 Hz, 1H), 7.92 (t, *J* = 6.9 Hz, 3H), 7.87 (t, *J* = 7.6 Hz, 1H), 7.82 (d, *J* = 8.3 Hz, 2H), 7.65 (t, *J* = 7.5 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 193.2, 149.7, 149.6, 140.4, 139.0, 132.4, 132.4, 130.1, 129.4, 129.2, 128.8, 127.9, 126.39, 117.79, 116.2.

quinolin-3-yl(m-tolyl)methanone (3ka)⁴

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 92% yield (45.5

mg, 0.184 mmol). ¹**H NMR (CDCl₃, 500 MHz):** δ 9.32 (s, 1H), 8.59 (s, 1H), 8.23 (d, *J* = 8.5 Hz, 1H), 7.94 (d, *J* = 8.1 Hz, 1H), 7.87 (t, *J* = 7.6 Hz, 1H), 7.70 – 7.62 (m, 3H), 7.47 (d, *J* = 7.5 Hz, 1H), 7.43 (t, *J* = 7.5 Hz, 1H), 2.45 (s, 3H). ¹³**C NMR (CDCl₃, 125 MHz):** δ 194.9, 150.2, 139.0, 138.7, 137.0, 133.9, 132.0, 130.4, 129.2, 129.2, 128.5, 127.7, 127.3, 126.7, 21.4.

(3-chlorophenyl)(quinolin-3-yl)methanone (3la)⁵

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 88%

yield (47.0 mg, 0.176 mmol). ¹H NMR (CDCl₃, 500 MHz): δ 9.32 (s, 1H), 8.57 (s, 1H), 8.23 (d, *J* = 8.4 Hz, 1H), 7.95 (d, *J* = 8.1 Hz, 1H), 7.91 – 7.87 (m, 1H), 7.85 (t, *J* = 1.8 Hz, 1H), 7.74 – 7.71 (m, 1H), 7.67 (t, *J* = 7.5 Hz, 1H), 7.64 – 7.62(m, 1H), 7.49 (t, *J* = 7.9 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 193.4, 149.9, 149.4, 139.0, 138.6, 135.0, 133.0, 132.2, 130.0, 129.8, 129.4, 129.3, 128.0, 127.8.

quinolin-3-yl(o-tolyl)methanone (3ma)⁵

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 91% yield (45.1 mg,

0.182 mmol). ¹**H NMR (CDCl₃, 500 MHz):** δ 9.36 (s, 1H), 8.48 (d, *J* = 1.9 Hz, 1H), 8.19 (d, *J* = 8.5 Hz, 1H), 7.90 – 7.83 (m, 2H), 7.64 – 7.60 (m, 1H), 7.49 – 7.45 (m, 1H), 7.41 – 7.35 (m, 2H), 7.31 (t, *J* = 7.5 Hz, 1H), 2.41 (s, 3H). ¹³**C NMR (CDCl₃, 125 MHz):** δ 197.0, 150.3, 149.7, 139.4, 137.6, 137.3, 132.1, 131.4, 131.0, 129.5, 129.4, 128. 9, 127.6, 125.5, 20.13.

(2-fluorophenyl)(quinolin-3-yl)methanone (3na)⁶

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 89% yield (44.7 mg,

0.178 mmol). ¹**H NMR (CDCl₃, 500 MHz):** δ 9.34 (s, 1H), 8.59 (s, 1H), 8.22 (d, *J* = 8.4 Hz, 1H), 7.94 (d, *J* = 8.2 Hz, 1H), 7.89 – 7.86 (m, 1H), 7.70 – 7.61 (m, 3H), 7.37 – 7.33 (m, 1H), 7.23 (t, *J* = 9.4 Hz, 1H). ¹³**C NMR (CDCl₃, 125 MHz):** δ 191.7, 160.2 (d, *J* = 253.2 Hz), 149.7, 149.6, 139.1, 134.0 (d, *J* = 8.6 Hz), 132.3, 131.0 (d, *J* = 2.1 Hz), 129.4, 129.3, 127.6, 126.1, 126.0, 124.7 (d, *J* = 3.5 Hz), 116.5 (d, *J* = 21.7 Hz). ¹⁹**F NMR (CDCl₃, 471 MHz):** δ - 109.8.

(2-chlorophenyl)(quinolin-3-yl)methanone (3oa)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 87% yield (46.4 mg,

0.174 mmol). Mp: 77 – 78 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.35 (s, 1H), 8.50 (s, 1H), 8.19 (d, *J* = 8.4 Hz, 1H), 7.90 (d, *J* = 8.1 Hz, 1H), 7.86 (t, *J* = 7.7 Hz, 1H), 7.63 (t, *J* = 7.5 Hz, 1H), 7.52 – 7.48 (m, 3H), 7.46 – 7.44 (m, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 193.9, 149.9, 149.8, 139.6, 137.6, 132.5, 131.9, 131.5, 130.4, 129.5, 129.5, 129.4, 127.7, 127.1. HRMS (ESI): Calcd for C₁₆H₁₁ClNO [M+H]⁺ 268.0524, found: 268.0523.

(2-bromophenyl)(quinolin-3-yl)methanone (3pa)¹

The mixture in the title were obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solids in 85% yield

(52.6 mg, 0.169 mmol). ¹**H NMR (CDCl₃, 500 MHz):** δ 9.35 (s, 1H), 8.48 (s, 1H), 8.18 (d, *J* = 8.4 Hz, 1H), 7.90 – 7.83 (m, 2H), 7.73 – 7.68 (m, 1H), 7.63 – 7.60 (m, 1H), 7.51 – 7.46 (m, 1H), 7.45 – 7.40 (m, 2H).¹³**C NMR (CDCl₃, 125 MHz):** δ 194. 6, 150.0, 149.9, 139.7, 139.6, 133. 5, 132.4, 131.8, 129.5, 129.3, 128.6, 127.6, 127. 6, 126.8, 123.9, 119.6.

(2,4-dichlorophenyl)(quinolin-3-yl)methanone (3qa)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 80% yield (48.0 mg, 0.159mmol). Mp: 72 – 73 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.33 (s, 1H), 8.49 (s, 1H), 8.21 (d, *J* = 8.3 Hz, 1H), 7.95 – 7.84 (m, 2H), 7.65 (t, *J* = 7.5 Hz, 1H), 7.55 (s, 1H), 7.44 (d, *J* = 0.9 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz): δ 192.9, 149.9, 149.7, 139.5, 137.5, 136.0, 132.6, 130.5, 130.3, 129.5, 128.8, 127.8, 127.6, 126.8. HRMS (ESI): Calcd for C₁₆H₁₀Cl₂NO [M+H]⁺ 302.0134, found: 302.0134.

naphthalen-2-yl(quinolin-3-yl)methanone (3ra)¹

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 81%

yield (45.8 mg, 0.162 mmol). ¹H NMR (CDCl₃, 500 MHz): δ 9.39 (s, 1H), 8.62 (d, J = 1.9 Hz, 1H), 8.32 (s, 1H), 8.23 (d, J = 8.5 Hz, 1H), 8.00 (d, J = 1.0 Hz, 2H), 7.95 – 7.93 (m, 3H), 7.89 – 7.86 (m, 1H), 7.68 – 7.63 (m, 2H), 7.60 – 7.56 (m, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 194.9, 150.3, 149.5, 138. 8, 135.5, 134.3, 132.3, 132.1, 131.8, 129.5, 129.2, 128.8, 128.7, 127.9, 127.6, 127.1, 126.7, 125.4.

furan-2-yl(quinolin-3-yl)methanone (3sa)¹

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 90% yield (40.1 mg,

0.180 mmol). ¹H NMR (CDCl₃, 500 MHz): δ 9.51 (s, 1H), 8.89 (s, 1H), 8.24 (d, *J* = 8.4 Hz, 1H), 8.00 (d, *J* = 8.0 Hz, 1H), 7.88 (t, *J* = 7.6 Hz, 1H), 7.78 (d, *J* = 1.1 Hz, 1H), 7.67 (t, *J* = 7.5 Hz, 1H), 7.41 (d, *J* = 3.5 Hz, 1H), 6.68 (dd, *J* = 3.6, 1.7 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 180.1, 152.4, 149.5, 147.5, 138. 8, 132.2, 129.3, 129.0, 129.0, 127.8, 120.9, 112.7.

quinolin-3-yl(thiophen-2-yl)methanone (3ta)¹

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 91% yield (43.6 mg,

0.182 mmol). ¹**H NMR (CDCl₃, 500 MHz):** δ 9.34 (s, 1H), 8.64 (d, *J* = 1.1 Hz, 1H), 8.18 (d, *J* = 8.4 Hz, 1H), 7.94 (d, *J* = 8.1 Hz, 1H), 7.85 – 7.82 (m, 1H), 7.78 (dd, *J* = 4.9, 0.9 Hz, 1H), 7.70 (dd, *J* = 3.8, 0.9 Hz, 1H), 7.63 (t, *J* = 7.5 Hz, 1H), 7.21 (dd, *J* = 4.8, 3.9 Hz, 1H). ¹³**C**

NMR (CDCl₃, 125 MHz): δ 186.1, 149.5, 149.4, 143.1, 137.7, 135.0, 135.0, 131.7, 130.6, 129.4, 129.0, 128.3, 127.6, 126.6.

(6-methoxyquinolin-3-yl)(phenyl)methanone (3ab)³

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 90%

yield (47.4 mg, 0.180 mmol). ¹H NMR (CDCl₃, 500 MHz): δ 9.14 (s, 1H), 8.45 (d, *J* = 1.6 Hz, 1H), 8.09 (d, *J* = 9.2 Hz, 1H), 7.87 – 7.83 (m, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.53 (t, *J* = 7.7 Hz, 2H), 7.48 (dd, *J* = 9.2, 2.7 Hz, 1H), 7.14 (d, *J* = 2.7 Hz, 1H), 3.93 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 195.0, 158.5, 147.7, 145.4, 137.5, 137.1, 133.0, 130.6, 130.4, 130.0, 129.9, 128.7, 128.6, 127.9, 124.8, 106.1, 55.6.

(6-fluoroquinolin-3-yl)(phenyl)methanone (3ac)⁷

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 87%

yield (43.6 mg, 0.174 mmol). ¹H NMR (CDCl₃, 500 MHz): δ 9.28 (s, 1H), 8.51 (d, J = 1.3 Hz, 1H), 8.24 – 8.21 (m, 1H), 7.89 – 7.84 (m, 2H), 7.69 – 7.61 (m, 2H), 7.55 (t, J = 7.7 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 194.6, 160.9 (d, J = 250.4 Hz), 149.5, 146.4, 138.1 (d, J = 5.3 Hz), 136.8, 133.3, 131.9 (d, J = 8.9 Hz), 130.1, 128.7, 122.1 (d, J = 25.8 Hz), 112.0 (d, J = 21.8 Hz). ¹⁹F NMR (CDCl₃, 471 MHz): δ -111.2.

(6-chloroquinolin-3-yl)(phenyl)methanone (3ad)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 85%

yield (45.2 mg, 0.169 mmol). Mp: 96 – 97 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.28 (d, *J* = 1.1 Hz, 1H), 8.44 (d, *J* = 1.5 Hz, 1H), 8.12 (d, *J* = 9.0 Hz, 1H), 7.89 (d, *J* = 2.1 Hz, 1H), 7.85 (d, *J* = 7.3 Hz, 2H), 7.76 (dd, *J* = 9.0, 2.2 Hz, 1H), 7.66 (t, *J* = 7.4 Hz, 1H), 7.54 (t, *J* = 7.7 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz): δ 194.4, 150.4, 147.7, 137.6, 136.7, 133.4, 133.2, 132.6, 131.0, 130.8, 130.0, 129.7, 128. 7, 128.6, 127.6, 127.2. HRMS (ESI): Calcd for C₁₆H₁₁ClNO [M+H]⁺ 268.0524, found: 268.0524.

(6-bromoquinolin-3-yl)(phenyl)methanone (3ae)⁷

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 84%

yield (52.1 mg, 0.168 mmol). ¹H NMR (CDCl₃, 500 MHz): δ 9.31 (d, J = 1.9 Hz, 1H), 8.46 (d, J = 1.8 Hz, 1H), 8.09 – 8.06 (m, 2H), 7.91 (dd, J = 9.0, 2.1 Hz, 1H), 7.85 (dd, J = 8.2, 1.1 Hz, 2H), 7.67 (t, J = 7.5 Hz, 1H), 7.55 (t, J = 7.8 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz): δ 194.4, 150.6, 147.9, 137.8, 137.6, 137.4, 136.7, 135.2, 133.3, 131.1, 131.0, 130. 8, 130.0, 128.7, 127.8, 121.6.

(7-fluoroquinolin-3-yl)(phenyl)methanone (3af)⁵

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 86%

yield (43.0 mg, 0.171 mmol). ¹H NMR (CDCl₃, 500 MHz): δ 9.33 (s, 1H), 8.59 (d, J = 1.6 Hz, 1H), 7.95 (dd, J = 9.0, 6.0 Hz, 1H), 7.87 – 7.83 (m, 3H), 7.67 (t, J = 7.4 Hz, 1H), 7.55 (t, J = 7.7 Hz, 2H), 7.47 – 7.43 (m, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 194.5, 164.5 (d, J = 254.4 Hz), 151.3, 138.8, 136.9, 133.2, 131.4 (d, J = 10.4 Hz), 130.0, 129.6, 128.7, 123.7, 118.4 (d, J = 25.5 Hz), 113.3 (d, J = 20.6 Hz). ¹⁹F NMR (CDCl₃, 471 MHz): δ -104.6.

(7-chloroquinolin-3-yl)(phenyl)methanone (3ag)⁵

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 85%

yield (45.4 mg, 0.170 mmol). ¹H NMR (CDCl₃, 500 MHz): δ 9.29 (s, 1H), 8.53 (d, *J* = 1.8 Hz, 1H), 8.19 (d, *J* = 8.5 Hz, 1H), 7.92 (d, *J* = 7.9 Hz, 1H), 7.88 – 7.85 (m, 1H), 7.75 – 7.72 (m, 2H), 7.70 – 7.67 (m, 2H), 7.66 – 7.63 (m, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 193.8, 150.0, 149.5, 138.7, 135.7, 132.0, 131.9, 131.5, 130.3, 129.7, 129.5, 129.1, 128.3, 127.7, 127.6, 126.5.

(7-bromoquinolin-3-yl)(phenyl)methanone (3ah)⁵

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 83%

yield (51.7 mg, 0.166 mmol). ¹H NMR (CDCl₃, 500 MHz): δ 9.30 (d, *J* = 2.1 Hz, 1H), 8.52 (d, *J* = 1.9 Hz, 1H), 8.37 (d, *J* = 1.4 Hz, 1H), 7.87 – 7.83 (m, 2H), 7.78 (d, *J* = 8.7 Hz, 1H), 7.72 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.67 – 7.64 (m, 1H), 7.54 (t, *J* = 7.7 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz): δ 194.4, 151.3, 149.8, 138.5, 136.8, 133.2, 131.9, 131.2, 130.3, 130.2, 130.0, 128.7, 126.3, 125.2, 119.7, 118.5.

[1,3]dioxolo[4,5-g]quinolin-7-yl(phenyl)methanone (3ai)¹

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 90%

yield (50.0 mg, 0.180 mmol). ¹H NMR (CDCl₃, 500 MHz): δ 9.09 (d, *J* = 2.1 Hz, 1H), 8.39 (d, *J* = 2.0 Hz, 1H), 7.84 (dd, *J* = 8.2, 1.1 Hz, 2H), 7.65 – 7.62 (m, 1H), 7.52 (t, *J* = 7.7 Hz, 2H), 7.47 (s, 1H), 7.12 (s, 1H), 6.16 (s, 2H).¹³C NMR (CDCl₃, 125 MHz): δ 194.8, 152.8, 148.7, 148.4, 148.2, 137.4, 137.2, 132.8, 129.9, 128.7, 128.5, 128.3, 124.0, 105.7, 103.7, 102.3.

phenyl(quinolin-3-yl)methanol (4)8

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 90% yield (42.3 mg,

0.180 mmol). ¹H NMR (DMSO-*d*₆, 500 MHz): δ 8.90 (s, 1H), 8.31 (s, 1H), 7.98 (t, *J* = 7.4 Hz, 2H), 7.71 (t, *J* = 7.4 Hz, 1H), 7.58 (t, *J* = 7.5 Hz, 1H), 7.47 (d, *J* = 7.5 Hz, 2H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.23 (t, *J* = 7.3 Hz, 1H), 6.26 (s, 1H), 5.99 (s, 1H). ¹³C NMR (DMSO-*d*₆, 125 MHz): δ 150.0, 146.7, 144.7, 138.5, 132.2, 129.2, 128.6, 128.3, 128.1, 127.5, 127.1, 126.8, 126.4, 72.5.

6. X-ray Crystallography of 3oa

Crystal preparation of compound 3oa.

Compound **3oa** (25 mg) was dissolved in 5 mL of dichloromethane/*n*-hexane (v1/v2 = 1:1), and it was crystallized to give crystal as colorless block after the solvent was slowly volatilized in 4 days at room temperature (~ 25 °C).

All diffraction data were obtained on a Bruker Smart Apex CCD diffractometer equipped

with graphite-monochromated Mo Kα radiation. CCDC-2143900 (**3oa**), contain the supplementary crystallographic data. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre (http://www.ccdc.cam.ac.uk/). Thermal ellipsoids are shown at the 30% level. Hydrogen atoms have been omitted for clarity. X-ray crystallographic data for **3oa** is available as Figure S1.

Figure S1. The molecular structure of 30a

	C (ID)	10		D /	A H	
Table SI.	Crystal Data	and Summary	of X-ray	' Data	Collection	tor Joa

Empirical formula	C ₁₆ H ₁₀ ClNO	
Formula weight	267.70	
Temperature	298(2) K	
Wavelength	0.71073 A	
Crystal system, space group	Monoclinic, C2/c	
Unit cell dimensions	a = 24.237(2) A alpha = 90 deg.	
	b = 8.5380(7) A beta = 97.588(3) deg.	
	c = 12.1562(11) A gamma = 90 deg.	
Volume	2493.6(4) A^3	
Z, Calculated density	8, 1.426 Mg/m^3	
Absorption coefficient	0.295 mm^-1	
F(000)	1104	
Crystal size	0.30 x 0.20 x 0.15 mm	
Theta range for data collection	2.53 to 25.02 deg.	
Limiting indices	-28<=h<=19, -10<=k<=9, -12<=l<=14	
Reflections collected / unique	6067 / 2201 [R(int) = 0.0468]	
Completeness to theta $= 25.02$	99.7 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.9570 and 0.9166	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2201 / 0 / 172	

Goodness-of-fit on F ²	1.040
Final R indices [I>2sigma(I)]	R1 = 0.0449, wR2 = 0.1072
R indices (all data)	R1 = 0.0814, wR2 = 0.1207
Largest diff. peak and hole	0.142 and -0.214 e.A^-3

7. Mechanism Research

(a) Free Radical Inhibitor Capture Experiment

A mixture of (*E*)-3-(dimethylamino)-1-phenylprop-2-en-1-one (**1a**) (0.2 mmol, 1.0 equiv), benzo[*c*]isoxazole (**2**) (0.3 mmol, 1.5 equiv), [Ru(*p*-cymene)Cl₂]₂ (0.01 mmol, 5 mol%) and TEMPO (3 equiv) were weighted in a Schlenk sealed tube equipped with a stir bar. Dry CH₃CN (1.5 mL) and HOAc (0.2 mmol, 1.0 equiv) were added and the mixture was stirred at 120 °C in a pre-heated oil bath for 12 h under N₂ atmosphere. Then, the mixture was cooled to room temperature and concentrated in vacuo and the resulting residue was purified by flash column chromatography on silica gel with EtOAc/petroleum ether, the product **3aa** was affored in 85% yield (39.7 mg, 0.170 mmol).

(b) Competition Experiment of 1b and 1e with 2a

A mixture of (*E*)-3-(dimethylamino)-1-(*p*-tolyl)prop-2-en-1-one (**1b**) (37.8 mg, 0.2 mmol, 1.0 equiv), (*E*)-3-(dimethylamino)-1-(4-fluorophenyl)prop-2-en-1-one (**1e**) (38.6 mg, 0.2 mmol, 1.0 equiv), benzo[*c*]isoxazole (**2a**) (23.8 mg, 0.2 mmol, 1.0 equiv) and [Ru(*p*cymene)Cl₂]₂ (0.01 mmol, 5 mol%) were weighted in a Schlenk sealed tube equipped with a stir bar. Dry CH₃CN (1.5 mL) and HOAc (0.2 mmol, 1.0 equiv) were added and the mixture was stirred at 120 °C in a pre-heated oil bath for 12 h under N₂ atmosphere. Then, the mixture was cooled to room temperature and concentrated in vacuo and the resulting residue was purified by flash column chromatography on silica gel with EtOAc/petroleum ether to give a mixture of products **3ba** and **3ea** at a ratio of 1:1.

(c) Competition Experiment of 1b and 1h with 2a

A mixture of (*E*)-3-(dimethylamino)-1-(*p*-tolyl)prop-2-en-1-one (**1b**) (37.8 mg, 0.2 mmol, 1.0 equiv), (*E*)-3-(dimethylamino)-1-(4-(trifluoromethyl)phenyl)prop-2-en-1-one (**1h**) (48.6 mg, 0.2 mmol, 1.0 equiv), benzo[*c*]isoxazole (**2a**) (23.8 mg, 0.2 mmol, 1.0 equiv) and [Ru(*p*cymene)Cl₂]₂ (0.01 mmol, 5 mol%) were weighted in a Schlenk sealed tube equipped with a stir bar. Dry CH₃CN (1.5 mL) and HOAc (0.2 mmol, 1.0 equiv) were added and the mixture was stirred at 120 °C in a pre-heated oil bath for 12 h under N₂ atmosphere. Then, the mixture was cooled to room temperature and concentrated in vacuo and the resulting residue was purified by flash column chromatography on silica gel with EtOAc/petroleum ether to give a mixture of products **3ba** and **3ha** at a ratio of 1:1.

 -2.4745

8. References:

-9.3351 -9.3048

1. D. K. Tiwari, M. Phanindrudu, S. B. Wakade, J. B. Nanuboluc and D. K. Tiwari, *Chem. Commun.*, 2017, **53**, 5302–5305.

2. S. B. Wakade, D. K. Tiwari, P. S. K. P. Ganesh, M. Phanindrudu, P. R. Likhar and D. K. Tiwari, *Org. Lett.*, 2017, **19**, 4948–4951.

3. H. Li, X. Xu, J. Yang, X. Xie, H. Huang and Y. Li, *Tetrahedron Lett.*, 2011, **52**, 530–533.

4. M. V. Khedkar, P. J. Tambade, Z. S. Qureshi and B. M. Bhanage, *Eur. J. Org. Chem.*, 2010, 6981–6986.

5. Y. Gao, R. C. Hider and Y. Ma, RSC Adv., 2019, 9, 10340–10344.

6. S. Khong and O. Kwon, J. Org. Chem., 2012, 77, 8257-8267.

7. T.-S. Jiang, Y. Zhou, L. Dai, X. Liu and X. Zhang, Tetrahedron Lett., 2019, 60, 2078-2083.

8. M. Kuriyama, R. Shimazawa and R. Shirai, J. Org. Chem., 2008, 73, 1597-1600.

110 100 fl (ppm)

9,2903 9,2876 8,5357 8,5357 9,2888 7,3288 7,3288 7,29888 7,2288 7,2288 7,2288 7,2248

5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -105 -115 -125 -135 f1 (ppm)

9.3259 9.3259 8.5486 8.5488 8.39197 8.3822 8.3822 8.3822 8.3822 8.3822 8.30129 8.0051 7.9270

0 110 100 f1 (ppm) 210 70 50 30 20 10 200 190 180 170 160 150 140 130 120 90 80 60 40

110 100 fl (ppm)

S31

11.0 10.5 10.0 6.0 5.5 fl (ppm) 9.5 7.5 7. 0 2.5 1.5 1.0 0.5 0.0 9.0 6.5 5.0 4. 5 4.0 3.5 3. 0 2.0

9 3124 9 3086 9 3086 9 3086 8 2848 8 2848 9 3882 9 3 2848 9 3 284 8 2848 9 2848 1 2 2828 1 2 8841 1 2

-9 3305 -9 3305 -9 3305 -9 3305 -9 3305 -9 3305 -1 9 6849 -1 9 4829 -1 9 8821 -1 8372 -1 6856 -1 4829 -1 482

