Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Energy-Resolved Mass Spectrometry to investigate nucleobase triplexes - a study applied to triplex-forming artificial nucleobase

Mauro Safir Filho,¹ Lionel Massi,¹ Antoine Millet,¹ Dylan Michel,¹ Wafa Moussa,¹ Cyril Ronco,¹ and Rachid Benhida^{1,2}

¹ Institut de Chimie de Nice CRNS UMR7272, Université Côte d'Azur, 28 Avenue Valrose 06108 Nice, France.

² Mohamed VI Polytechnic University, UM6P, 43150, Ben Guerir, Morocco.

cyril.ronco@univ-cotedazur.fr

rachid.benhida@univ-cotedazur.fr

Synthesis

General procedure for the reduction of nitro group. To a suspension of corresponding nitroaryl (1 eq) and Pd/C – 10% (10% wt.) in methanol (0.01 M), under stirring and at 0°C, was added carefully by portions sodium borohydride (5 eq). The reaction mixture was stirred at 0°C until complete dissolution of sodium borohydride and was then allowed to react at r.t. The crude mixture was filtered through a pad of celite, concentrated under reduced pressure and purified by silica gel column chromatography to afforded corresponding amino product.

General procedure for the amide synthesis. To a solution of the corresponding anilines (1 equiv) under argon in anhydrous pyridine (0.3 M) was added the corresponding acyl chloride or anhydride (1.1 equiv). The reaction mixture was allowed to react at rt until complete conversion of the starting material (approximately 2h), and pyridine was removed under reduced pressure. The crude material was dissolved in 50 mL of ethyl acetate. The aqueous layer was washed twice with 1 M aq HCL solution (50 mL), then washed two times with saturated aq NaHCO₃ solution (50 mL) and brine (50 mL) and dried with MgSO₄ to afford the corresponding amide

General procedure for the urea synthesis. To a solution of 2-methylbenzo[d]oxazol-5-amine **3** (0.55 mmol, 1 eq.) in anhydrous DCM (0.05 M) was added the corresponding isocyanate (0.66 mmol, 1.2 eq.) and the mixture was stirred for 2 hours at room temperature. The formed precipitate was removed by filtration and washed with DCM (3×5 mL) to afford the corresponding urea as light solids.

Scheme 1. Synthetic route to S nucleobase analogues S_{1-9}

Reagents and conditions. I) NaBH₄, Pd/C (10%), MeOH/DCM (1/1), r.t., overnight. b) corresponding anhydride, pyridine, r.t., 2h (for S_{10} , S_4 , S_1 and S_9); c) corresponding acyl chloride, pyridine, r.t., 2h (for S_2 , S_3 , S_6 , S_7); d) corresponding *N*-Boc protected amino acid, 2-chloro-1-methylpyridinium iodide, Et₃N, CH₂Cl₂, reflux, 3h (for S_7 and S_8); e) 50% TFA, CH₂Cl₂, r.t., 24 h.

The general procedure for the reduction of nitro group was followed using 1a (1.1 g, 5.0 mmol), Pd/C and NaBH₄ (1.04 g) to afford compound 2a in 76% yield (722 mg).

¹H NMR (200 MHz, MeOD- d_4) δ 7.45 (s, 1H), 7.28 – 7.06 (m, 3H), 6.70 (dt, J = 6.5, 2.3 Hz, 1H), 2.70 (s, 3H).

¹³C NMR (50 MHz, MeOD-*d*₄) δ 167.9, 156.6, 149.1, 136.4, 130.4, 117.3, 116.4, 114.3, 113.8, 18.8.

2c

The general procedure for the reduction of nitro group was followed using 1c (1.4 g, 5.0 mmol), Pd/C and NaBH₄ (1.04 g) to afford compound 2a in 54% yield (677 mg).

¹H NMR (400 MHz, DMSO) δ 12.21 (s, 1H), 7.34 (s, 1H), 7.29 – 7.23 (m, 1H), 7.01 (dd, *J* = 5.7, 4.1 Hz, 2H), 5.21 (s, 2H), 2.15 (s, 3H).

¹⁹F NMR (377 MHz, DMSO) δ -135.90.

¹³C NMR (101 MHz, DMSO) δ 168.9, 157.7, 151.6, 149.2, 148.6, 136.4 (d, *J* = 13.3 Hz), 130.9 (d, *J* = 3.0 Hz), 115.1 (d, *J* = 18.8 Hz), 113.6 (d, *J* = 5.4 Hz), 106.7, 22.5.

S^{*}_{10}

The general procedure for the amide synthesis was followed using 2a (190 mg, 1.0 mmol, 1 eq.) and Ac₂O (102 µL, 1.1 mmol, 1.1 eq.) to afford S*₁₀ in 72% (167 mg).

¹H NMR (200 MHz, MeOD- d_4) δ 8.04 (s, 1H), 7.66 – 7.47 (m, 3H), 7.33 (t, J = 7.9 Hz, 1H), 2.72 (s, 3H), 2.14 (s, 3H).

¹³C NMR (50 MHz, MeOD-*d*₄) δ 171.7, 168.2, 155.9, 140.3, 136.3, 130.2, 123.1, 120.8, 119.0, 114.5, 23.9, 18.8.

2a

The general procedure for the amide synthesis was followed using **2b** (233 mg, 1.0 mmol, 1 eq.) and Ac₂O (102 μ L, 1.1 mmol, 1.1 eq.) to afford **S**₁ in 81% (222 mg).

¹H NMR (400 MHz, DMSO- d_6) δ 12.27 (s, 1H), 10.00 (s, 1H), 8.22 (s, 1H), 7.54 (d, J = 7.7 Hz, 1H), 7.48 (s, 1H), 7.41 (d, J = 8.1 Hz, 1H), 7.32 (t, J = 7.9 Hz, 1H), 2.16 (s, 3H), 2.06 (s, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.7, 168.3, 157.9, 148.7, 139.7, 134.8, 129.0, 120.5, 118.5, 116.6, 107.9, 24.1, 22.5.

 \mathbf{S}_2

The general procedure for the amide synthesis was followed using **2b** (233 mg, 1.0 mmol, 1 eq.) and hexanoyl chloride (140 μ L, 1.1 mmol, 1.1 eq.) to afford **S**₂ in 49% (162 mg).

¹H NMR (200 MHz, MeOD- d_4) δ 8.14 (t, J = 1.7 Hz, 1H), 7.62 (dt, J = 7.6, 1.4 Hz, 1H), 7.50 – 7.41 (m, 1H), 7.37 – 7.26 (m, 2H), 2.38 (t, J = 7.5 Hz, 2H), 2.22 (s, 3H), 1.80 – 1.63 (m, 2H), 1.41 – 1.34 (m, 4H), 0.94 (t, J = 5.9 Hz, 3H).

¹³C NMR (50 MHz, MeOD-*d*₄) δ 174.8, 170.9, 159.4, 150.9, 140.2, 136.6, 130.0, 122.8, 120.7, 118.9, 108.8, 38.0, 32.6, 26.7, 23.5, 22.6, 14.3.

 S_4

The general procedure for the amide synthesis was followed using **2b** (233 mg, 1.0 mmol, 1 eq.) and trifluoroacetic anhydride (154 μ L, 1.1 mmol, 1.1 eq.) to afford **S**₄ in 32% (105 mg).

¹H NMR (400 MHz, Acetone- d_6) δ 11.15 (s, 1H), 10.29 (s, 1H), 8.38 (t, J = 1.8 Hz, 1H), 7.81 – 7.73 (m, 1H), 7.58 (ddd, J = 8.1, 2.1, 1.0 Hz, 1H), 7.46 – 7.42 (m, 2H), 2.29 (s, 3H).

¹⁹F NMR (377 MHz, Acetone- d_6) δ -76.22.

¹³C NMR (101 MHz, Acetone-*d*₆) δ 206.2, 159.0 (d, 9.9 Hz), 158.9, 149.6, 137.7, 136.6, 130.2, 124.0, 120.9, 119.4, 108.9, 22.8.

The general procedure for the amide synthesis was followed using 2c (251 mg, 1.0 mmol, 1 eq.) and Ac₂O (102 μ L, 1.1 mmol, 1.1 eq.) to afford S₉ in 62% (181 mg).

¹H NMR (400 MHz, DMSO- d_6) δ 12.29 (s, 1H), 9.77 (s, 1H), 8.45 (d, J = 6.3 Hz, 1H), 7.65 – 7.59 (m, 1H), 7.52 (s, 1H), 7.29 (dd, J = 10.6, 8.7 Hz, 1H), 2.16 (s, 3H), 2.11 (s, 3H).

¹⁹F NMR (377 MHz, DMSO-*d*₆) δ -126.11.

¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.7, 168.7, 158.0, 155.9, 154.3, 147.7, 130.7 (d, *J* = 3.1 Hz), 126.4 (d, *J* = 12.1 Hz), 122.2 (d, *J* = 7.6 Hz), 121.6, 115.7 (d, *J* = 20.2 Hz), 107.8, 23.6, 22.5.

Scheme 2. Synthetic route to HB nucleobase analogues HB₁₋₅

Reagents and conditions. a) RNCO, DCM, r.t., 2 hours.

 HB_1

The general procedure for the urea synthesis was followed using 3 (80 mg) and butyl isocyanate (59 mg) to afford HB₁ in 79% yield (105 mg).

¹H NMR (200 MHz, MeOD- d_4) δ 7.73 (d, J = 2.1 Hz, 1H), 7.41 (d, J = 8.8 Hz, 1H), 7.21 (dd, J = 8.8, 2.1 Hz, 1H), 3.20 (t, J = 6.8 Hz, 2H), 2.59 (s, 3H), 1.59 – 1.32 (m, 4H), 0.96 (t, J = 7.1 Hz, 3H).

¹³C NMR (50 MHz, MeOD-*d*₄) δ 166.7, 158.5, 148.0, 142.4, 138.1, 118.3, 111.1, 110.6, 40.6, 33.4, 21.0, 14.1.

HB₃

The general procedure for the urea synthesis was followed using **3** (80 mg) and o-tolyl isocyanate (82 μ L) to afford **HB**₃ in 67% yield (101 mg).

¹H NMR (200 MHz, DMSO- d_6) δ 9.13 (s, 1H), 7.93 (s, 1H), 7.89 (d, J = 1.9 Hz, 1H), 7.84 (d, J = 8.2 Hz, 1H), 7.55 (d, J = 8.7 Hz, 1H), 7.25 (dd, J = 8.8, 2.1 Hz, 1H), 7.15 (t, J = 7.9 Hz, 2H), 7.00 – 6.88 (m, 1H), 2.58 (s, 3H), 2.25 (s, 3H).

¹³C NMR (50 MHz, DMSO-*d*₆) δ 164.4, 152.9, 145.7, 141.5, 137.4, 136.6, 130.2, 127.6, 126.2, 122.7, 121.1, 115.6, 110.1, 108.3, 17.9, 14.2.

HB₄

The general procedure for the urea synthesis was followed using **3** (80 mg) and o-tolyl isocyanate (82 μ L) to afford HB₄ in 66% yield (100 mg).

¹H NMR (200 MHz, DMSO- d_6) δ 8.73 (s, 1H), 8.57 (s, 1H), 7.85 (d, J = 1.9 Hz, 1H), 7.53 (d, J = 8.7 Hz, 1H), 7.34 (d, J = 8.4 Hz, 2H), 7.25 (dd, J = 8.8, 2.1 Hz, 1H), 7.08 (d, J = 8.3 Hz, 1H), 2.58 (s, 3H), 2.24 (s, 3H).

¹³C NMR (50 MHz, DMSO-*d*₆) δ 164.4, 152.8, 145.8, 141.5, 137.1, 136.5, 130.6, 129.2, 118.3, 115.8, 110.1, 108.5, 20.3, 14.2.

 $\begin{array}{c}
 CI \\
 CI \\
 N \\
 H \\
 H \\
 HB_{5}
\end{array}$

The general procedure for the urea synthesis was followed using **3** (80 mg) and o-tolyl isocyanate (100 mg) to afford HB_5 in 51% yield (76 mg).

¹H NMR (200 MHz, DMSO- d_6) δ 8.83 (d, J = 3.9 Hz, 2H), 7.85 (d, J = 1.9 Hz, 1H), 7.58 – 7.42 (m, 3H), 7.35 – 7.19 (m, 3H), 2.58 (s, 3H).

¹³C NMR (50 MHz, DMSO-*d*₆) δ 164.5, 152.7, 145.9, 141.5, 138.8, 136.2, 128.6, 125.3, 119.8, 115.9, 110.1, 108.8, 14.2.

HB₅

Triplex breakdown curves

Representative CID of [U+ APO₃-+ U] triplet

Model	Boltzmanı	n	
	y = A2	+ (A1-A2)/	$(1 + \exp((x - x)))$
Equation	x0)/dx))		
Reduced Chi	-		
Sqr	4,27556	3,36064	0,05443
Adj. R	-		
Square	0,99721	0,99778	0,66863
			Standard
		Value	Error
В	A1	92,75528	1,28446
В	A2	0,9702	0,87713
В	x0	7,47546	0,06878
В	dx	0,93968	0,06094
D	A1	6,75512	1,13003
D	A2	97,57041	0,75126
D	x0	7,29534	0,05812
D	dx	0,86776	0,05175
F	A1	0,26377	0,33727
F	A2	1,31846	0,15361
F	x0	6,94872	2,18196
F	dx	2,45992	1,95694

Representative CID of $[S_1 + APO_3 + U]$ triplet

Model	Boltzmann	1	
	y = A2	+ (A1-A2)/	$(1 + \exp((x + x)))$
Equation	x0)/dx))		
Reduced Chi-			
Sqr	1,73667	2,26911	0,21584
Adj. R-			
Square	0,99913	0,99849	0,99375
			Standard
		Value	Error
В	A1	99,68878	0,68521
В	A2	-0,57177	0,67635
В	x0	9,89211	0,04065
В	dx	0,97679	0,036
D	A1	0,1824	0,78928
D	A2	87,75405	0,78198
D	x0	9,92282	0,05478
D	dx	1,01607	0,04887
F	A1	0,13577	0,22839
F	A2	12,82165	0,22361
F	x0	9,85412	0,09132
F	dx	0,71913	0,07836
	Model Equation Reduced Chi- Sqr Adj. R- Square B B B B B B D D D D D D F F F F F F	ModelBoltzmann $y = A2$ Equation $x0)/dx$)Reduced Chi-Sqr $1,73667$ Adj.R-Square $0,99913$ BA1BA2B $x0$ BdxDA1DA2D $x0$ D dx FA1FA2F $x0$ F dx	ModelBoltzmann $y = A2 + (A1-A2)/$ Equationx0)/dx))Reduced Chi-Sqr1,73667Adj.R-Square0,999130,999130,99849ValueBA199,68878BA2-0,57177Bx09,89211Bdx0,97679DA10,1824DA287,75405Dx09,92282Ddx1,01607FA10,13577FA212,82165Fx09,85412Fdx0,71913

Representative CID of [S2 + APO3-+ U] triplet

Model	Boltzmanr	ı	
	y = A2	+ (A1-A2)/	$(1 + \exp((x + x)))$
Equation	x0)/dx))		
Reduced Ch	ni-		
Sqr	1,91489	1,91096	0,43801
Adj. I	R-		
Square	0,99891	0,9978	0,99722
			Standard
		Value	Error
В	A1	99,61841	0,54178
В	A2	-0,52863	0,6928
В	x0	11,82777	0,03173
В	dx	0,92434	0,02676
С	A1	0,38641	0,53784
С	A2	70,1979	0,68255
С	x0	11,81867	0,04433
С	dx	0,8966	0,03744
D	A1	-0,00129	0,2629
D	A2	30,35893	0,34249
D	x0	11,85458	0,05314
D	dx	0,99145	0,04471

Representative CID of [S3 + APO3-+ U] triplet

Model	Boltzmann			
	y = A2	+ (A1-A2)/($(1 + \exp((x \cdot x)))$	
Equation	x0)/dx))			
Reduced Chi-				
Sqr	3,15301	1,93038	0,30175	
Adj. R-				
Square	0,9982	0,99749	0,99851	
			Standard	
		Value	Error	
В	A1	100,64843	0,8648	
В	A2	-0,58688	0,83186	
В	x0	11,79567	0,04205	
В	dx	0,95347	0,03621	
С	A1	-0,42988	0,67428	
С	A2	66,6039	0,65923	
С	x0	11,85217	0,05011	
С	dx	0,96232	0,04317	
D	A1	-0,20739	0,26885	
D	A2	33,98733	0,25059	
D	x0	11,68793	0,03774	
D	dx	0,93189	0,03249	

Representative CID of [S4 + APO3-+ U] triplet

	/	/	
-			Standard
		Value	Error
triplex	A1	100,25678	0,74624
triplex	A2	6,26368	1,75805
triplex	x 0	20,23381	0,09427
triplex	dx	1,18522	0,07861
m/z	A1	-0,18417	0,73526
m/z	A2	92,23059	1,78425
m/z	x0	20,40608	0,09547
m/z	dx	1,17667	0,07951

Representative CID of [S5 + APO3-+ U] triplet

Model	Boltzmann			
Equation Reduced Chi-	y - A2 - x(0)/dx))	F (A1-A2)/($1 + \exp((x - x))$	
Sqr	3,44159	3,23755	0,02924	
Adj. K- Square	0,99781	0,99763	0,99589	
			Standard	
		Value	Error	
В	A1	99,89932	1,0731	
В	A2	-1,76869	0,98024	
В	x0	10,48388	0,05025	
В	dx	1,05948	0,04475	
С	A1	0,19679	1,03848	
С	A2	94,86484	0,94709	
С	x0	10,48567	0,05199	
С	dx	1,05186	0,04627	
D	A1	-0,09662	0,10221	
D	A2	6,92298	0,09594	
D	x0	10,47094	0,07418	
D	dx	1,17709	0,06667	

Representative CID of [S6 + APO3-+ U] triplet.

Model	Boltzmann			
	y = A2	+ (A1-A2)/	$(1 + \exp((x - x)))$	
Equation	x0)/dx))			
Reduced Chi-				
Sqr	3,16585	0,4025	2,20543	
Adj. R-				
Square	0,99819	0,99624	0,99777	
			Standard	
		Value	Error	
В	A1	99,90802	0,89367	
В	A2	0,08647	0,67255	
В	x0	11,97249	0,0395	
В	dx	0,88626	0,03383	
С	A1	0,05302	0,31025	
С	A2	24,58547	0,24587	
С	x0	12,16442	0,05706	
С	dx	0,88443	0,04917	
D	A1	0,06554	0,75055	
D	A2	75,30992	0,5554	
D	x0	11,91039	0,04356	
D	dx	0,88106	0,03724	

Representative CID of [S7 + APO3-+ U] triplet

Model	Boltzmann			
Equation	y = A2 + x0)/dx))	(A1-A2)/(1	$+ \exp((x-$	
Reduced Chi-	4		1 00000	
Sqr	4,03282	5,87795	1,02292	0,42936
Adj. R-				
Square	0,99786	0,99464	0,96964	0,98178
		Value	Standard Er	ror
Triplex	A1	99,3073	0,64911	
Triplex	A2	-0,80011	1,07561	
Triplex	x0	18,6342	0,05874	
Triplex	dx	0,95096	0,05063	
D	A1	0,68597	0,78232	
D	A2	75,40231	1,21719	
D	x0	18,36869	0,08874	
D	dx	0,87366	0,07673	
F	A1	-0,08628	0,34752	
F	A2	15,18762	0,81947	
F	x0	19,77328	0,31049	
F	dx	1,53529	0,25761	
Н	A1	0,03798	0,1994	
Н	A2	11,91487	0,41218	
Н	x0	19,86257	0,1666	

Representative CID of [S8 + APO3-+ U] triplet

Н

Model	Boltzmanı	1	
	y = A2	+ (A1-A2)/	$(1 + \exp((x \cdot x)))$
Equation	x0)/dx))		
Reduced Ch	i-		
Sqr	2,65593	1,29627	0,38003
Adj. R	L-		
Square	0,99868	0,99931	0,91888
			Standard
		Value	Error
В	A1	99,90062	0,75464
В	A2	-0,17584	0,88309
В	x0	11,18948	0,04715
В	dx	0,88574	0,04029
D	A1	0,29312	0,51472
D	A2	94,63211	0,58367
D	x0	11,05905	0,03125
D	dx	0,76011	0,02686
F	A1	0,02751	0,31363
F	A2	5,17161	0,41854
F	x0	11,77622	0,50431
F	dx	1,3924	0,44846
	Model Equation Reduced Ch Sqr Adj. R Square B B B B B B D D D D D F F F F F	ModelBoltzmann $y = A2$ Equation $x0)/dx)$ Reduced Chi-Sqr2,65593Adj.R-Square0,99868BA1BA2Bx0BdxDA1DA2Dx0DdxFA1FA2Fx0Fdx	ModelBoltzmann $y = A2 + (A1-A2)/$ Equationx0)/dx))Reduced Chi-Sqr2,65593Adj.R-Square0,998680,998680,99931ValueBA199,90062BA2-0,17584Bx0I1,18948Bdx0,88574DA10,29312DA294,63211Dx0I1,05905Ddx0,76011FA25,17161Fx011,77622Fdx1,3924

Representative CID of [S9 + APO3-+ U] triplet

Model	Boltzmann			
	y = A2 -	+ (A1-A2)/($1 + \exp((x - x))$	
Equation	x0)/dx))			
Reduced Chi-				
Sqr	5,00387	4,20009	6,64543	
Adj. R-				
Square	0,99662	0,95575	0,99178	
			Standard	
		Value	Error	
triplex	A1	100,28684	1,1085	
triplex	A2	12,12818	1,25339	
triplex	x0	10,91634	0,0846	
triplex	dx	1,06925	0,07252	
UA	A1	-0,37136	1,09885	
UA	A2	22,75499	1,28789	
UA	x0	10,98052	0,3676	
UA	dx	1,39078	0,32437	
F	A1	0,17853	1,24123	
F	A2	64,58008	1,43203	
F	x0	11,06789	0,12675	
F	dx	0,99878	0,10832	

Representative CID of [HB1 + CPO3-+ G] triplet

Model	Boltzmann v = A2	+ (A1-A2)/($1 + \exp((x - x))$
Equation Reduced Chi	x0)/dx))		
Sqr Adi. R	2,75827	2,75827	
Square	0,99817	0,99817	
•			Standard
		Value	Error
В	A1	99,54149	0,84965
В	A2	-0,50245	0,94452
В	x0	10,81938	0,04958
В	dx	1,18421	0,04717
С	A1	0,45851	0,84965
С	A2	100,50245	0,94452
С	x0	10,81938	0,04958
С	dx	1,18421	0,04717

Representative CID of [HB2 + CPO3-+ G] triplet

Model	Boltzmann v = A2	+ (A1-A2)/($1 + \exp((x - x))$
Equation Reduced Chi-	x(0)/dx))	()/(
Sqr Adi R-	2,40393	2,40393	
Square R-	0,99868	0,99868	~ 1 1
		Value	Standard Error
В	A1	99,6328	0,57412
В	A2	-0,96603	0,69762
В	x0	11,15538	0,03599
В	dx	0,96596	0,0332
С	A1	0,3672	0,57412
С	A2	100,96603	0,69762
С	x0	11,15538	0,03599
С	dx	0,96596	0,0332

Representative CID of [HB3 + CPO3-+ G] triplet

Boltzmann		
y = A2	+ (A1-A2)/($(1 + \exp((x - x)))$
x0)/dx))		
2,81673	2,72473	0,69269
0,99803	0,99751	0,97149
		Standard
	Value	Error
A1	100,07733	0,89472
A2	-0,42085	1,14961
x0	12,16348	0,05
dx	1,09748	0,042
A1	-0,60418	0,85554
A2	85,47509	1,09855
x0	12,18518	0,05351
dx	1,01966	0,04505
A1	0,18431	0,53218
A2	14,97871	0,71861
x0	11,87765	0,27129
dx	1,72958	0,24068
	Boltzmann y = A2 x0)/dx)) 2,81673 0,99803 A1 A2 x0 dx A1 dx A1 dx A1 dx A1 dx A1 dx A1 dx A1 dx A1 dx A1 dx A1 dx A1 dx A1 dx A1 dx A1 dx dx dx A1 dx	Boltzmann $y = A2 + (A1-A2)/(x0)/dx))$ 2,816732,724730,998030,99751ValueValueA1100,07733A2-0,42085x012,16348dx1,09748A1-0,60418A285,47509x012,18518dx1,01966A10,18431A214,97871x011,87765dx1,72958

Representative CID of [HB4 + CPO3-+ G] triplet

Model	Boltzmann	Boltzmann		
	y = A2	+ (A1-A2)/	$(1 + \exp((x + x)))$	
Equation	x0)/dx))			
Reduced Ch	i-			
Sqr	3,68022	3,49479	7,57601	
Adj. F	 -			
Square	0,997	0,99458	0,93131	
			Standard	
		Value	Error	
В	A1	98,35538	1,03012	
В	A2	4,20597	1,34907	
В	x0	12,23021	0,06348	
В	dx	1,14126	0,05347	
С	A1	-0,6092	0,98709	
С	A2	71,61115	1,49099	
С	x0	12,83243	0,09158	
С	dx	1,26502	0,07954	
D	A1	2,40469	1,48941	
D	A2	27,35844	1,4577	
D	x0	11,25928	0,25337	
D	dx	0,83605	0,21293	

Representative CID of $[HB_5 + CPO_3 + G]$ triplet

Model	Boltzmanr $v = A^2$	n + (A1-A2)/($1 + \exp((x - x))$
Equation Reduced Ch	x(0)/dx))	· (111 112)/(
Sqr	2,51803	2,51803	
Adj. I Square	R- 0,99838	0,99838	
1			Standard
		Value	Error
В	A1	100,42859	0,77595
В	A2	1,09018	0,9154
В	x0	14,23032	0,04005
В	dx	0,95505	0,03376
С	A1	-0,42859	0,77595
С	A2	98,90982	0,9154
С	x0	14,23032	0,04005
С	dx	0,95505	0,03376