Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Synthesis and characterization of polymethine dyes carrying thiobarbituric and a carboxylic acid moieties

Arthur Desvals¹, Corentin Lefebvre¹, Mariagrazia Fortino², Johann Rogier¹, Clément Michelin¹, Samy Alioui¹, Elodie Rousset¹, Alfonso Pedone², Gilles Lemercier¹, Norbert Hoffmann^{*1}

¹ CNRS, Université de Reims Champagne-Ardenne, ICMR, Equipe de Photochimie, UFR Sciences, B.P. 1039, 51687 Reims, France, Phone: + 33 3 26 91 33 10, e-mail: <u>norbert.hoffmann@univ-reims.fr</u>

² Università di Modena e Reggio Emilia, via Campi 103, 41125 Modena, Italy

Table of contents

1. Preparatio	on of 5-ethoxy-2(5H)-furanone					
5-Hydroxyfura	n-2(5H)-one.	3				
5-ethoxy-2(5H)-furanone						
2. NMR spec	ctra of compounds 2 , 5a , 5b					
¹ H and ¹³ C{ ¹ H}	H and ¹³ C{ ¹ H} NMR spectra of 3-bromo-5-ethoxyfuran-2(5H)-one (2) 7					
¹ H, ¹³ C{ ¹ H}, ¹ H-	¹ H cosy, ¹ H- ¹³ C HSQC, ¹ H- ¹³ C HMBC NMR spectra of 5a	8				
^{1}H and $^{13}C{^{1}H}$	H and ${}^{13}C{}^{1}H$ NMR spectra of 5b 1.					
3. HRMS spe	ectra and data of compounds 5a , 5b					
HRMS spectru	m and data of compounds 5a	12				
HRMS spectru	m and data of compounds 5b	13				
4. Photophy	sical Studies					
Figure S1	Absorption spectra of compounds $5a$ and $5b$ as acetonitrile solutions	14				
Figure S2	Normalized absorption spectra of compound 5a in several solvents	14				
Figure S3	Normalized absorption spectra of compound 5b in several solvents	15				
Figure S4	Non-normalized emission spectra of compound 5a in several solvents	15				
Figure S5	Normalized and non-normalized emission spectra of 5b in several solvents	16				
Figure S6	Emission spectra of compound $\mathbf{5b}$ in (de)oxygenated DMSO solutions	17				
Figure S7	Emission spectra of compound 5a in (de)oxygenated DMSO solutions	17				
5. Computat	ional Studies					
Figure S8		18				
Figure S9		19				
Optimized Car	tesian coordinates	20				
Computed osc	illator strength values.	24				

1. Preparation of 5-ethoxy-2(5H)-furanone

5-Hydroxyfuran-2(5H)-one.

In a 2 L photochemical immersion well reactor were introduced freshly distilled furfural (100 g, 1 mol, 1 eq.), EtOH (1.5 L) and Rose Bengale (1.0 g, 1 mmol, 0.001 eq.). Air injection was performed at the bottom of the reactor with a pump as it is used for aquaria or hydroponic systems. The irradiation was carried out with a medium pressure mercury vapor lamp set to 400 W that was placed inside the reactor. Rose Bengale (0.5 g, 0.5 mmol, 0.0005 eq.) was added twice inside the photoreactor when the solution started decoloring. Consumption of furfural was followed by ¹H NMR. After 10 h, furfural was totally converted into 5-Hydroxyfuran-2(5H)-one. EtOH was removed under reduced pressure (the temperature was kept below 30 °C) to obtain an orange oil that solidified. The photosensitizer was removed partially by filtration in diethyl ether over silica and charcoal. After evaporation, 5 g of liquid side products were separated from the solid by filtration on a frit glass (ϕ = 3). 5-Hydroxyfuran-2(5H)-one was obtained as an off-white powder (94 g, 90 %).¹H NMR (500 MHz, CDCl₃, ppm): δ 7.30 (dd, *J* = 5.6 Hz, 1.2 Hz, 1H; CH), 6.24 (m, 1H; CH), 6.23 (m, 1H; CH), 4.22 (s, broad, 1H; OH).¹³C NMR (126 MHz, CDCl₃, ppm): δ 171.3 (Cq), 151.9 (CH), 124.9 (CH), 98.7 (CH). Spectroscopic data are in agreement with those previously reported (M. I. Burguete, R. Gavara, F. Galindo and S. V. Luis, *Tetrahedron Lett.* 2010, **51**, 3360-3363).

Photochemical immersion well reactor equipped with a medium pressure mercury vapor lamp that have been used for the photooxygenation of furfural.

 ^1H NMR (500 MHz) spectrum of 5-Hydroxyfuran-2(5H)-one in CDCl_3

$^{13}\text{C}\{^1\text{H}\}$ NMR (126 MHz) spectrum 5-Hydroxyfuran-2(5H)-one in CDCl_3

110 100 f1 (ppm) -10 220 210 200 160 150 140 130 120

5-Ethoxy-2(5H)-furanone.

In a two-neck round bottom flask equipped with a stirring bar and an inverse Dean-Stark apparatus were introduced 5-Hydroxyfuran-2(5H)-one (30 g, 0.3 mol, 1 eq.), CHCl₃ (100 mL) and a solution of PTSA (0.26 g, 1.5 mmol, 0.005 eq) in dry ethanol (23 mL, 0.39 mol, 1.3 eq.). The reaction mixture was stirred at reflux. After 14 h, the mixture was cooled and poured in a separatory funnel. The organic layer was washed with a saturated aqueous NaHCO₃ solution (100 mL). An impurity of unsaturated aldehyde was removed by washing the organic layer with a saturated aqueous NaHSO₃ solution (2 x 100 mL). The organic fraction was washed with H₂O, dried over MgSO₄ and concentrated under reduced pressure. The yellow oil was further purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 8:2, KMnO₄) to yield 5-ethoxy-2(5H)-furanone as a yellowish liquid (17.1 g, 45 %). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.21 (m, 1H; CH), 6.22 (m, 1H; CH), 5.92 (m, 1H; CH), 3.92 (m, 1H; CH₂), 3.74 (m, 1H; CH₂), 1.27 (td, *J* = 7 Hz, J=1.1 Hz, 3H; CH₃). ¹³C NMR (126 MHz, CDCl₃, ppm): δ 170.7 (Cq), 150.5 (CH), 125.1 (CH), 103.3 (CH), 66.3 (CH₂), 15.2 (CH₃). Spectroscopic data are in agreement with those previously reported (T. Schmidt, N. Heise, K. Merzweiler, H.-P. Deigner, A. Al-Harrasi and R. Csuk, *Molecules* 2021, **26**, 3676).

¹H NMR (500 MHz) spectrum of Ethoxyfuranone in CDCl₃

110 100 f1 (ppm) i

¹H-¹H cosy NMR spectrum of **5a** in DMSO-*d*₆

 $^{1}\text{H}-^{13}\text{C}$ HSQC NMR spectrum of **5a** in DMSO- d_{6}

 $^1\text{H-}^{13}\text{C}$ HMBC NMR spectrum of **5a** in DMSO- d_6

3. HRMS spectra and data of compounds 5a, 5b

HRMS spectrum and data of compounds 5a

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 2337 formula(e) evaluated with 15 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-80 H: 0-100 N: 0-6 O: 0-15 S: 0-2 AD_148 20HR432 15 (0.288)

20HR432 15 (0	0.288)					07								1:	TOF MS ES+ 2.23e+006
100 162	20554 242.0450	297.0696		441.2976	523.1251 62	27.1154 67.	3.1215 717.	0850 835.0867	987.2322	1061.2487		136	7.2045 1411	1805	
Minimum:	200	300	40	-1.5	500	600	700	800 900	1000	1100	1200	1300	1400	1500	1600
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula							
673.1215	673.1216 673.1222 673.1207 673.1207 673.1207 673.1202 673.1202 673.1202 673.1202 673.1203 673.1234 673.1234 673.1234 673.1193 673.1189 673.1189	$\begin{array}{c} -0.1 \\ -0.7 \\ 0.8 \\ -1.2 \\ 1.3 \\ -1.4 \\ 1.5 \\ -1.9 \\ -2.0 \\ 2.2 \\ -2.6 \\ 2.7 \\ -3.2 \\ 3.3 \end{array}$	$\begin{array}{c} \textcircled{0,0}\\ -1.0\\ 1.2\\ -1.8\\ 1.9\\ -2.1\\ 2.2\\ -2.8\\ -3.0\\ 3.3\\ -3.9\\ 4.0\\ -4.8\\ 4.9 \end{array}$	26.5 35.5 27.5 45.5 21.5 44.5 13.5 40.5 22.5 22.5 31.5 31.5	1513.1 1521.1 1524.7 1519.0 1525.6 1513.3 1526.2 1519.3 1518.6 1522.3 1522.3 1525.2 1524.9 1525.2 1525.2 1525.2	0.610 8.582 12.209 6.471 13.105 0.802 13.741 6.790 6.073 9.800 12.306 6.584 12.732 12.465 6.568	54.36 0.02 0.00 0.15 0.00 44.84 0.00 0.11 0.23 0.01 0.00 0.14 0.00 0.14	C36 H25 N4 06 C44 H21 N2 04 C35 H21 N4 01 C35 H21 N4 01 C35 H29 015 S C48 H13 N6 C52 H17 02 C27 H25 N6 013 C24 H29 N6 013 C24 H29 N6 013 C45 H17 N6 S C34 H25 015 C32 H25 N4 011 C47 H17 N2 04 C40 H21 N2 09 C39 H21 N4 06	52 5 8 82 8 8						

HRMS spectrum and data of compounds 5a

4. Photophysical Studies

Figure S1: Absorption spectra of compounds **5a** (tetraPh, black), and **5b** (tetraMe, red) as acetonitrile solutions ($6.1 \times 10^{-6} \text{ mol.L}^{-1}$ and $7.2 \times 10^{-6} \text{ mol.L}^{-1}$ for compound **5a** and **5b**, respectively).

Figure S2: Normalized absorption spectra of compound **5a** (tetraPh) (conc. 6.1×10^{-6} mol.L⁻¹)

Figure S3: Normalized absorption spectra of compound 5b (tetraMe) (conc. 6.1×10^{-6} mol.L⁻¹).

Figure S4: Non-normalized (emission spectra of compound 5a (tetraPh); conc. around 10⁻⁶ mol.L⁻¹

Figure S5: Normalized (up) and non-normalized (bottom) emission spectra of compound **5b** (tetraMe); conc. around 10⁻⁶ mol.L⁻¹

Figure S6: Emission spectra of compound **5b** (tetraMe) in deoxygenated (dark green), air-equilibrated (green) and O₂ saturated (light green) DMSO solutions (excitation 530 nm; same other experimental conditions for all measurements)

Figure S7: Emission spectra of compound **5a** (tetraPh) in deoxygenated (dark green) and O₂ saturated (light green) DMSO solutions (same other experimental conditions for both measurements)

5. Computational Studies

Figure S8: HOMOs and LUMOs for tautomer A

Figure S9: HOMOs and LUMOs for tautomer C

Optimized Cartesian coordinates

Structure A

С	-4.757312	-0.965085	-0.075544
С	-3.556208	1.149838	-0.494421
С	-2.310525	0.477031	-0.203005
С	-2.342909	-0.872686	0.118936
С	-1.087603	1.276195	-0.144936
С	0.097452	0.727548	-0.557722
Н	0.082082	-0.227799	-1.068370
С	1.379976	1.295181	-0.308938
Н	1.441736	2.373308	-0.189333
С	-1.131694	2.637572	0.577228
0	-1.615868	2.587355	1.738288
0	-1.301908	-1.615902	0.483466
Ν	-4.738402	0.372909	-0.384351
Ν	-3.529132	-1.578730	0.139852
S	-6.197893	-1.833581	0.038536
0	-3.622901	2.333925	-0.831447
0	-0.640446	3.624658	-0.025155
С	2.572776	-0.866094	-0.057045
С	2.557303	0.585115	-0.206817
С	3.807512	1.344416	-0.129849
С	5.039115	-0.794296	-0.058097
0	1.551549	-1.554471	0.075814
0	3.849494	2.574420	-0.136997
S	6.505439	-1.616589	-0.057762
Ν	3.835224	-1.482720	-0.027503
Ν	4.996040	0.588661	-0.070511
С	-3.511755	-3.030544	0.433218
Н	-3.971141	-3.212524	1.405995
Н	-4.081773	-3.549847	-0.335536
Н	-2.485132	-3.377076	0.434896
С	3.862547	-2.955144	0.067598
Н	4.386201	-3.368373	-0.794788
Н	4.379172	-3.256953	0.979614
Н	2.834349	-3.302414	0.087049
С	6.264886	1.339886	-0.045418
Н	6.830035	1.078135	0.849804
Н	6.857840	1.095051	-0.927687
Н	6.018565	2.397273	-0.039107
С	-6.015463	1.062550	-0.634838
Н	-6.525024	0.599674	-1.481492
Н	-6.651414	0.987443	0.248239
Н	-5.788458	2.101858	-0.852195
Н	-0.431722	-1.170231	0.413063

635	-0.067760
930	-0.066797
090	-0.066644
810	-0.071406
864	-0.063047

Structure B

С	-5.093703	-0.833635	-0.067760
С	-3.596136	1.123930	-0.066797
С	-2.443589	0.246090	-0.066644
С	-2.639072	-1.189810	-0.071406
С	-1.154096	0.834864	-0.063047
С	0.075596	0.159700	-0.022332
Н	0.065915	-0.915200	0.011677
С	1.301046	0.837798	-0.020747
Н	1.290085	1.923530	-0.062129
С	-1.049410	2.347264	-0.144745
0	-0.946266	2.914499	1.071499
Н	-0.843282	3.876111	0.954960
0	-1.730404	-2.027348	-0.078830
Ν	-4.877064	0.527598	-0.072285
Ν	-3.987805	-1.651053	-0.067778
S	-6.661786	-1.469485	-0.062562
0	-3.504820	2.359187	-0.060722
0	-0.888885	2.952882	-1.187903
С	2.887164	-1.101776	0.078206
С	2.600699	0.315378	0.024584
С	3.685943	1.284044	0.012932
С	5.307937	-0.576787	0.098263
0	2.025199	-1.987295	0.093049
0	3.512547	2.508339	-0.028178
S	6.914476	-1.106142	0.135176
Ν	4.261141	-1.472016	0.114939
Ν	5.004359	0.768600	0.050926
С	-4.188028	-3.110996	-0.065563
Н	-4.748501	-3.406255	0.822688
Н	-4.746726	-3.409594	-0.953894
Н	-3.207827	-3.577021	-0.064048
С	4.559773	-2.913397	0.170612
Н	5.145018	-3.205937	-0.702558
Н	5.130317	-3.139604	1.072565
Н	3.612180	-3.443144	0.182327
С	6.105534	1.747369	0.036282
Н	6.713599	1.635360	0.935064
Н	6.734455	1.585839	-0.840436
Н	5.661604	2.737586	0.003260
С	-6.037643	1.435725	-0.075316
Н	-6.649332	1.250433	-0.959194
Н	-6.641876	1.267713	0.817342
Н	-5.658679	2,452890	-0.086421

Stru	cture C		
С	-4.908329	-0.918394	-0.090955
С	-3.468697	0.989102	-0.648427
Ċ	-2.424444	0.453871	0.150524
С	-2.602808	-0.817799	0.807764
Ċ	-1.125732	1.120565	0.255939
Ċ	0.048745	0.406012	0.142659
Ĥ	-0.025603	-0.648669	-0.071850
C	1.344801	0.980021	0.218260
Ĥ	1.412511	2.042447	0.424699
C	-1.061280	2.604054	0.604659
õ	-1.713916	3.460698	-0.160894
Ĥ	-2.357004	2.944477	-0.782534
0	-1.744833	-1.389753	1.492473
Ň	-4.676847	0.275539	-0.741650
N	-3.889784	-1.421815	0.678259
S	-6.389784	-1.726827	-0.242941
Õ	-3.369625	2.051571	-1.332208
Ō	-0.414831	2.978341	1.575758
Č	2.740692	-1.061429	-0.204675
Č	2.574226	0.365485	0.047838
Ċ	3.751595	1.234664	0.143648
Ċ	5.194924	-0.730746	-0.241928
Ō	1.804485	-1.856161	-0.306629
0	3.679862	2.448478	0.347104
S	6.740695	-1.380325	-0.411423
Ν	4.071168	-1.529563	-0.331758
Ν	5.011648	0.620024	-0.009296
С	-4.106809	-2.683614	1.405607
Н	-4.971748	-2.584544	2.062693
Н	-4.290127	-3.495068	0.698721
Н	-3.211046	-2.885879	1.984508
С	4.246383	-2.973297	-0.575980
Н	4.761779	-3.128408	-1.524721
Н	4.836929	-3.414701	0.227823
Н	3.258910	-3.422862	-0.607233
С	6.196834	1.492129	0.086637
Н	6.834112	1.161213	0.907685
Н	6.763274	1.449912	-0.844519
Н	5.845386	2.503143	0.267470
С	-5.739222	0.836779	-1.597395
Н	-5.975676	0.135447	-2.398996
Н	-6.635784	1.010377	-1.001184
Н	-5.374416	1.771147	-2.010563

Structure B

Structure C

Computed oscillator strength values.

Electonic states	Oscillator strength			
S ₁	1.5010			
S_2	0.0002			
S ₃	0.0009			