Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

New Journal of Chemistry

Photophysical properties of homobimetallic Cu(I)-Cu(I) and heterobimetallic Cu(I)-Ag(I) complexes of 2-(6-bromo-2-pyridyl)-1*H*-imidazo[4,5-*f*][1,10]phenanthroline

Zhan Wu, Shu Cui, Zhenqin Zhao, Bingling He, Xiu-Ling Li*

School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China

	$1a \cdot 4CH_2Cl_2$	$\textbf{2b} \cdot 2CH_2Cl_2 \cdot 2CH_3OH \cdot 2H_2O$	1c ·4H ₂ O	$2c \cdot 4CH_2Cl_2$
Formula weight	$C_{94}H_{74}BrCl_{10}Cu_2N_5O_{10}P_4$	$C_{100}H_{89}BrCl_5Cu_2N_5O_{10}P_4\\$	C90H73AgBrClCuN5O10P4	$C_{100}H_{81}AgBrCl9CuN_5O_6P_4$
T (K)	150(2)	150(2)	150(2)	150(2)
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073
Crystal system	triclinic	monoclinic	orthorhombic	monoclinic
Space group	P-1	Pc	$P2_{1}2_{1}2_{1}$	$P2_{1}/c$
Unit cell dimensions				
a (Å)	15.5719(15)	13.8873(11)	13.8637(12)	18.887(4)
b (Å)	15.9403(15)	10.6708(8)	24.798(2)	18.800(4)
c (Å)	20.762(2)	31.655(2)	26.122(2)	27.414(6)
α (°)	82.0390(10)	90.00	90.00	90.00
β (°)	70.3860(10)	96.5600(10)	90.00	100.064(3)
γ (°)	83.2990(10)	90.00	90.00	90.00
V (Å ³)	4794.2(8)	4660.2(6)	8980.5(13)	9584(4)
Z	2	2	4	4
Dcalc (Mg·m ⁻³)	1.468	1.397	1.274	1.485
$\mu (\mathrm{mm}^{-1})$	1.265	1.155	1.052	1.218
F(000)	2152	2008	3504	3680
Reflections collected	24403	22894	36196	39931
Independent reflections	16608	12211	11582	13468
Reflections with $I > 2\sigma(I)$	13598	11457	10739	9549
Data/restraints/parameters	16608/0/1054	12211/2/1109	11582/0/983	13468/0/1036
Goodness-of-fit (GOF) on F^2	1.044	1.053	1.038	1.007
Final R indices $[I > 2\sigma(I)]$	0.0451	0.0275	0.0315	0.0440
$wR_2 [I > 2\sigma(I)]$	0.1194	0.0693	0.0707	0.0970
R indices (all data)	0.0568	0.0304	0.0361	0.0714
wR ₂ (all data)	0.1263	0.0703	0.0725	0.1071

Table S1. Crystallographic data and select refinement details for complexes 1a·4CH₂Cl₂, 2b·2CH₂Cl₂ 2CH₃OH 2H₂O, 1c 4H₂O and 2c 4CH₂Cl₂

	14010 020 1014	in bond tengens (1) und ungles ()			112012 20113011 2112		
1a 4CH ₂ Cl ₂								
Cu1–N1	2.078(3)	Cu1–N2	2.045(3)	Cu1–P1	2.288(1)	Cu1–P2	2.210 (1)	
C13-N3	1.363(4)	C13-N4	1.324(4)	Cu2–N4	2.061(3)	Cu2–N5	2.213(3)	
Cu2–P3	2.287 (1)	Cu2–P4	2.245(1)	N1–Cu1–N2	81.25(10)	N1–Cu1–P1	99.95(7)	
N1–Cu1–P2	133.74(8)	N2–Cu1–P1	100.95(7)	N2–Cu1–P2	118.20(7)	P1–Cu1–P2	114.87(3)	
N4-Cu2-N5	79.06(10)	N4–Cu2–P3	102.29(7)	N4-Cu2-P4	118.51(8)	N5–Cu2–P3	104.06(8)	
N5-Cu2-P4	123.26(8)	P3–Cu2–P4	120.90(3)					
2b 2CH ₂ Cl ₂ 2CH ₃ OH·2H ₂ O								
Cu1–N1	2.069(3)	Cu1–N2	2.067(3)	Cu1–P1	2.222(1)	Cu1–P2	2.256(1)	
C13-N3	1.361(5)	C13–N4	1.348(5)	Cu2–N4	2.044(3)	Cu2–N5	2.178(3)	
Cu2–P3	2.247(1)	Cu2–P4	2.278(1)	N1–Cu1–N2	80.87(12)	N1–Cu1–P1	113.64(9)	
N1–Cu1–P2	109.95(9)	N2–Cu1–P1	125.80(10)	N2–Cu1–P2	103.00(9)	P1–Cu1–P2	117.61(4)	
N4-Cu2-N5	79.79(12)	N4–Cu2–P3	123.50(9)	N4–Cu2–P4	106.77(10)	N5–Cu2–P3	114.65(9)	
N5-Cu2-P4	103.17(9)	P3–Cu2–P4	120.33(4)					
1c·4H ₂ O								
Cu1–N1	2.081(4)	Cu1–N2	2.046(4)	Cu1–P1	2.208(2)	Cu1–P2	2.283(2)	
C13-N3	1.366(7)	C13-N4	1.346(6)	Ag1–N4	2.265(4)	Ag1–N5	2.491(4)	
Ag1–P3	2.524(2)	Ag1–P4	2.404(2)	N1–Cu1–N2	80.98(16)	N1–Cu1–P1	129.86(13)	
N1–Cu1–P2	98.57(13)	N2–Cu1–P1	120.66(14)	N2–Cu1–P2	105.36(14)	P1–Cu1–P2	114.96(6)	
N4-Ag1-N5	71.00(14)	N4-Ag1-P3	103.28(12)	N4–Ag1–P4	128.78(12)	N5–Ag1–P3	93.96(11)	
N5-Ag1-P4	139.57(11)	P3–Ag1–P4	110.87(5)					
2c 4CH ₂ Cl ₂								
Cu1–N1	2.039(3)	Cu1–N2	2.102(3)	Cu1–P1	2.244(1)	Cu1–P2	2.237(1)	
C13-N3	1.341(5)	C13–N4	1.358(5)	Ag1–N4	2.264(3)	Ag1–N5	2.477(3)	

Table S2. Main bond lengths (Å) and angles () for complexes 1a 4CH₂Cl₂, 2b 2CH₂Cl₂ 2CH₃OH·2H₂O, 1c·4H₂O and 2c 4CH₂Cl₂

Ag1–P3	2.469(1)	Ag1–P4	2.443(1)	N1-Cu1-N2	80.57(13)	N1-Cu1-P1	119.06(10)
N1–Cu1–P2	118.32(10)	N2–Cu1–P1	107.43(10)	N2–Cu1–P2	111.60(10)	P1–Cu1–P2	113.90(5)
N4–Ag1–N5	71.42(11)	N4-Ag1-P3	117.29(8)	N4–Ag1–P4	125.43(8)	N5–Ag1–P3	106.74(8)
N5-Ag1-P4	114.51(8)	P3-Ag1-P4	112.28(4)				

Figure S1. ¹H NMR of bippH in DMSO-*d*₆

Figure S2. ¹H NMR of complex **1a** in DMSO-*d*₆

Figure S3. ¹H NMR of complex **2a** in DMSO-*d*₆

Figure S4. ¹H NMR of complex **1b** in DMSO-*d*₆

Figure S5. ¹H NMR of complex **2b** in DMSO-*d*₆

Figure S6. ¹H NMR of complex 1c in DMSO- d_6

Figure S7. ¹H NMR of complex 2c in DMSO- d_6

Figure S9. ¹³C NMR of complex **1a** in CD₂Cl₂

Figure S10. ¹³C NMR of complex **2a** in CD₂Cl₂

Figure S12. ¹³C NMR of complex **2b** in CD₂Cl₂

Figure S13. ¹³C NMR of complex **1c** in CD₂Cl₂

Figure S15. ³¹P {¹H} NMR of complex **1a** in DMSO- d_6

Figure S16. ³¹P {¹H} NMR of complex **2a** in DMSO- d_6

Figure S17. ³¹P {¹H} NMR of complex **1b** in DMSO-*d*₆

Figure S18. ³¹P {¹H} NMR of complex **2b** in DMSO- d_6

Figure S19. ³¹P {¹H} NMR of complex 1c in DMSO- d_6

Figure S20. ³¹P {¹H} NMR of complex 2c in DMSO- d_6

Spectrum from Data20220318-02-P-1+2-1.wiff (sample 1) - Sample001, Experiment 1, +TOF MS (80 - 5000) from 0.094 to 0.113 min
C18H11BrN5

Figure S21. MS spectra of bpipH

Spectrum from Data20220318-02-P-1+2-2.wiff (sample 1) - Sample002, Experiment 1, +TOF MS (80 - 5000) from 0.103 min

Spectrum from Data20220318-02-P-1+2-2.wiff (sample 1) - Sample002, Experiment 1, +TOF MS (80 - 5000) from 0.122 min

Figure S22. MS spectra of complex 1a

Spectrum from Data20220318-P-3.wiff (sample 1) - Sample003, Experiment 1, +TOF MS (80 - 5000) from 0.103 min

Spectrum from Data20220318-P-3.wiff (sample 1) - Sample003, Experiment 1, +TOF MS (80 - 5000) from 0.103 min

Figure S23. MS spectra of complex 2a

Figure S24. MS spectra of complex 1b

Figure S25. MS spectra of complex 2b

Figure S26. MS spectra of complex 1c

Figure S27. MS spectra of complex 2c