Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Direct C-H Functionalization of Tetrahydro- γ -Carbolines at α -Position

Yahui Zhang⁺, Yi Chen⁺, Mei Guo⁺, Ge Sun, Rongbin Que, Ranran Cui, Yu Gao^{*}, and Haijun Chen^{*}

Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China

Table of contents 1. General Information	7
2. Graphical Procedure for Gram-scale Preparation of 46	
3. General Procedures	
Compound 1	
Compound 2	11
Compound 3	
Compound 4	
Compound 5	14
Compound 6	15
Compound 7	
Compound 8	17
Compound 9	
Compound 10	
Compound 11	20
Compound 12	21
Compound 13	22
Compound 14	23
Compound 15	24
Compound 16	25
Compound 17	26
Compound 18	27
Compound 19	
Compound 20	29
Compound 21	
Compound 22	
Compound 23	
Compound 24	
Compound 25	
Compound 26	35
Compound 27	

	Compound 28	37
	Compound 29	38
	Compound 30	39
	Compound 31	40
	Compound 32	41
	Compound 33	42
	Compound 34	43
	Compound 35	44
	Compound 36	45
	Compound 37	46
	Compound 38	47
	Compound 39	48
	Compound 40	49
	Procedure for gram-scale of 40	49
	Compound 41	50
	Compound 42	51
	Compound 43	52
	Compound 44	53
	Compound 45	54
	Compound 46	55
	Compound 47	56
	Compound 48	57
	Compound 49	58
	Compound 50	59
	Compound 51	60
3	. NMR Spectrum	61
	¹ H NMR Spectrum of 1	61
	¹³ C NMR Spectrum of 1	61
	¹ H NMR Spectrum of 2	62
	¹³ C NMR Spectrum of 2	62
	¹ H NMR Spectrum of 3	63

¹³ C NMR Spectrum of 3	63
¹ H NMR Spectrum of 4	64
¹³ C NMR Spectrum of 4	64
¹ H NMR Spectrum of 5	65
¹³ C NMR Spectrum of 5	65
¹ H NMR Spectrum of 6	
¹³ C NMR Spectrum of 6	66
¹ H NMR Spectrum of 7	67
¹³ C NMR Spectrum of 7	67
¹ H NMR Spectrum of 8	68
¹³ C NMR Spectrum of 8	68
¹ H NMR Spectrum of 9	
¹³ C NMR Spectrum of 9	
¹ H NMR Spectrum of 10	70
¹³ C NMR Spectrum of 10	70
¹ H NMR Spectrum of 11	71
¹³ C NMR Spectrum of 11	71
¹ H NMR Spectrum of 12	72
¹³ C NMR Spectrum of 12	72
¹ H NMR Spectrum of 13	73
¹³ C NMR Spectrum of 13	73
¹ H NMR Spectrum of 14	74
¹³ C NMR Spectrum of 14	74
¹ H NMR Spectrum of 15	75
¹³ C NMR Spectrum of 15	75
¹ H NMR Spectrum of 16	76
¹³ C NMR Spectrum of 16	76
¹ H NMR Spectrum of 17	77
¹³ C NMR Spectrum of 17	77
¹ H NMR Spectrum of 18	
¹³ C NMR Spectrum of 18	

¹ H NMR Spectrum of 19	79
¹³ C NMR Spectrum of 19	79
¹ H NMR Spectrum of 20	80
¹ H NMR Spectrum of 21	81
¹³ C NMR Spectrum of 21	81
¹ H NMR Spectrum of 22	
¹³ C NMR Spectrum of 22	82
¹ H NMR Spectrum of 23	83
¹³ C NMR Spectrum of 23	83
¹ H NMR Spectrum of 24	
¹³ C NMR Spectrum of 24	
¹ H NMR Spectrum of 25	
¹³ C NMR Spectrum of 25	85
¹ H NMR Spectrum of 26	
¹³ C NMR Spectrum of 26	
¹ H NMR Spectrum of 27	
¹³ C NMR Spectrum of 27	
¹ H NMR Spectrum of 28	
¹³ C NMR Spectrum of 28	
¹ H NMR Spectrum of 29	
¹³ C NMR Spectrum of 29	
¹ H NMR Spectrum of 30	90
¹³ C NMR Spectrum of 30	90
¹ H NMR Spectrum of 31	
¹³ C NMR Spectrum of 31	
¹ H NMR Spectrum of 32	92
¹³ C NMR Spectrum of 32	92
¹ H NMR Spectrum of 33	93
¹³ C NMR Spectrum of 33	93
¹ H NMR Spectrum of 34	94
¹³ C NMR Spectrum of 34	94

¹ H NMR Spectrum of 35	
¹³ C NMR Spectrum of 35	
¹ H NMR Spectrum of 36	
¹³ C NMR Spectrum of 36	
¹ H NMR Spectrum of 37	97
¹³ C NMR Spectrum of 37	97
¹ H NMR Spectrum of 38	
¹³ C NMR Spectrum of 38	
¹ H NMR Spectrum of 39	
¹³ C NMR Spectrum of 39	
¹ H NMR Spectrum of 40	
¹³ C NMR Spectrum of 40	
¹ H NMR Spectrum of 41	
¹³ C NMR Spectrum of 41	
¹ H NMR Spectrum of 42	
¹³ C NMR Spectrum of 42	
¹ H NMR Spectrum of 43	
¹³ C NMR Spectrum of 43	
¹ H NMR Spectrum of 44	
¹³ C NMR Spectrum of 44	
¹ H NMR Spectrum of 45	
¹³ C NMR Spectrum of 45	
¹ H NMR Spectrum of 46	
¹³ C NMR Spectrum of 46	
¹ H NMR Spectrum of 47	
¹³ C NMR Spectrum of 47	
¹ H NMR Spectrum of 48	
¹³ C NMR Spectrum of 48	
¹ H NMR Spectrum of 49	
¹³ C NMR Spectrum of 49	
¹ H NMR Spectrum of 50	

	¹³ C NMR Spectrum of 50	.110
	¹ H NMR Spectrum of 51	.111
	¹³ C NMR Spectrum of 51	.111
4	. X-ray Crystal Structure Data	.112
	X-ray Crystal Structure Data for compound 25	.112
	X-ray Crystal Structure Data for compound 46	.113

1. General Information

All reactions were performed under a designated atmosphere in flame-dried round bottom flasks, magnetically stirred, unless otherwise noted. All reactions were performed at room temperature (rt., approximately 25 °C) unless otherwise noted. Preparative column chromatography was performed using silica gel 60, particle size 0.063–0.200 mm (70–230 mesh, flash). Analytical TLC was carried out employing silica gel 60 F254 plates (Merck, Darmstadt). Visualization of the developed chromatograms was performed with detection by UV (254 nm and 365 nm). Preparative thin layer chromatography (PTLC) separations were carried out on 0.20 mm Yantai Jiangyou silica gel plates (HSGF254). ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were recorded on a Bruker-400 (¹H, 400 MHz; ¹³C, 101 MHz) spectrometer. Chemical shifts for protons are reported in parts per million and are references to the NMR solvent peak (CDCl₃: δ 7.26; DMSO-d₆: 2.50; CD₃OD: δ 3.31). Chemical shifts for carbons are reported in parts per million and are referenced to the carbon resonances of the NMR solvent (CDCl₃: δ 77.16; DMSO- d_6 : 39.52; CD₃OD: δ 49.00). Signals are listed in ppm, and multiplicity identified as s = singlet, d = doublet, t = triplet, q =quartet, m = multiplet. Chemical shifts were expressed in ppm, and J values were given in Hz. High resolution mass Spectrum (HRMS) were obtained from Thermo Fisher Scientific Exactive Plus mass spectrometer. The melting point was determined using the X-4A melting point apparatus (Shanghai Yidian Co., Ltd.) and uncorrected. Concentration under reduced pressure was performed by rotary evaporation at 25-35 °C at appropriate pressure. Purified compounds were further dried under high vacuum (0.01-0.10 Torr). Yields refer to purified and spectroscopically pure compounds unless otherwise noted. All commercially available starting materials and solvents were reagent grade and used without further purification.

Abbreviations used: TLC = thin layer chromatography *t*-BuOCl = *tert*-butyl hypochlorite 2-MeTHF = 2-methyltetrahydrofuran PE = petroleum ether EtOAc = ethyl acetate DMSO = dimethyl sulfoxide TMEDA = *N*,*N*,*N'*,*N'*-tetramethylethylenediamine 2. Graphical Procedure for Gram-scale Preparation of 46

(Left) *N*-Ts-substituted TH γ C (1.6325 g, 5.0 mmol); (Center) 2-MeTHF used in this reaction; (Right) *t*-BuOCl used in this reaction.

(Left) Reaction mixture stirring for 2 min at rt.; (Center) indole used in this reaction; (Right) Reaction mixture after stirring for 10 min at rt.

(Left) TLC under UV (PE/EtOAc = 3:1, line 1: reaction mixture; line 2: co-spot of reaction mixture and desire product; line 3: desire product); (Center) Dilution and extraction of the organic layer; (Right) Dried over anhydrous Na₂SO₄.

(Left) Filtered. (Center) The crude product; (Right) Purified by chromatography on silica gel (PE/EtOAc = 3:1).

Product after column chromatography.

3. General Procedures

Compound 1

N-phenyl-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (163 mg, 0.5 mmol) in 2-methyltetrahydrofuran (10 mL) was added tert-butylhypochlorite (60 mg, 0.55 mmol). The reaction mixture was stirred at rt for 2 min. Then aniline (167 mg, 1.0 mmol) was added into the mixture. After stirring for another 1 h, the reaction mixture was concentrated under reduced pressure. Silica gel (0.7 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/EtOAc = 2:1) to provide the desired product (177 mg, 85%) as a white solid.

Physical State: white solid.

Melting Point: 108.7-109.5 °C.

TLC: $R_f = 0.41 (PE/CH_2Cl_2 = 1:2)$.

¹H NMR (400 MHz,CDCl₃) δ 8.11 (s, 1H), 7.74 (d, J = 7.6 Hz, 2H), 7.44 (d, J = 7.7 Hz, 1H), 7.31 (d, J = 8.6 Hz, 2H), 7.23 (d, J = 7.5 Hz, 3H), 7.18 (d, J = 7.8 Hz, 1H), 7.12 (t, J = 7.2 Hz, 1H), 6.83 (t, J = 7.2 Hz, 1H), 6.73 (d, J = 7.5 Hz, 2H), 4.90 (s, 1H), 4.47 (d, J = 14.1 Hz, 1H), 4.35 (d, J = 14.0 Hz, 1H), 3.64 (d, J = 12.0 Hz, 1H), 3.45 – 3.39 (m, 1H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 146.08, 143.79, 136.08, 134.00, 132.19, 129.81, 129.74, 127.60, 124.78, 122.77, 120.01, 119.05, 118.17, 114.04, 111.37, 107.85, 48.61, 47.22, 43.20, 21.55.

HRMS (ESI): calcd for $C_{24}H_{23}N_3O_2S [M + H]^+m/z 418.1584$, found 418.1582.

N-(2-fluorophenyl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (326 mg, 1.0 mmol) in 2-methyltetrahydrofuran (10 mL) was added *tert*-butylhypochlorite (120 mg, 1.1 mmol). The reaction mixture was stirred at rt for 2 min. Then 2-fluoroaniline (167 mg, 1.5 mmol) was added into the mixture. After stirring for another 3.5 h, the reaction mixture was concentrated under reduced pressure. Silica gel (1.5 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 1:2) to provide the desired product (319 mg, 73%) as a white solid.

Physical State: white solid.

Melting Point: 148.3-149.7 °C.

TLC: $R_f = 0.42$ (PE/CH₂Cl₂ = 1:1).

¹**H NMR (400 MHz, CDCl₃)** δ 8.14 (s, 1H), 7.74 (d, *J* = 7.6 Hz, 2H), 7.45 (d, *J* = 7.7 Hz, 1H), 7.31 (d, *J* = 6.7 Hz, 3H), 7.21 (t, *J* = 7.5 Hz, 1H), 7.13 (t, *J* = 7.4 Hz, 1H), 7.09 – 7.01 (m, 2H), 6.89 (t, *J* = 8.2 Hz, 1H), 6.79 – 6.73 (m, 1H), 4.93 (s, 1H), 4.43 (d, *J* = 4.3 Hz, 2H), 3.77 – 3.72 (m, 1H), 3.36 – 3.31 (m, 1H), 2.41 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 152.01 (d, J = 239.6 Hz), 143.83 , 136.14 , 134.37 (d, J = 11.4 Hz), 134.03 , 131.60 , 129.82 , 127.57 , 124.94 (d, J = 3.5 Hz), 124.80 , 122.88 , 120.08 , 118.61 (d, J = 7.0 Hz), 118.24 , 115.31 (d, J = 18.8 Hz), 113.35 (d), 111.40 , 108.15 , 48.36 , 47.03 , 43.06 , 21.54 .

HRMS (ESI): calcd for $C_{24}H_{22}FN_3O_2S [M + H]^+m/z 436.1490$, found 436.1476.

N-(2-chlorophenyl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (163 mg, 0.5 mmol) in 2-methyltetrahydrofuran (10 mL) was added tert-butylhypochlorite (60 mg, 0.55 mmol). The reaction mixture was stirred at rt for 2 min. Then 2-chloroaniline (127 mg, 1.0 mmol) was added into the mixture. After stirring for another 2.5 h, he reaction mixture was concentrated under reduced pressure. Silica gel (0.7 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/ EtOAc = 4:1) to provide the desired product (189 mg, 84%) as a white solid.

Physical State: white solid.

Melting Point: 191.3-195.2 °C.

TLC: $R_f = 0.38$ (PE/CH₂Cl₂ = 1:1).

¹**H NMR (400 MHz,CDCl₃)** δ 8.16 (s, 1H), 7.74 (d, *J* = 7.6 Hz, 2H), 7.46 (d, *J* = 7.6 Hz, 1H), 7.30 (d, *J* = 8.5 Hz, 4H), 7.21 (t, *J* = 7.2 Hz, 2H), 7.13 (t, *J* = 7.2 Hz, 1H), 6.87 (d, *J* = 8.0 Hz, 1H), 6.75 (t, *J* = 7.4 Hz, 1H), 4.98 (s, 1H), 4.54 (d, *J* = 13.8 Hz, 2H), 4.35 (d, *J* = 13.9 Hz, 1H), 3.86 (d, *J* = 11.6 Hz, 1H), 3.25 – 3.20 (m, 1H), 2.41 (s, 3H).

¹³C NMR (101 MHz, CDCl₃/CD₃OD=10:1) δ 143.90, 141.94, 136.25, 133.83, 131.21, 129.79, 129.68, 128.06, 127.48, 124.64, 122.62, 120.04, 119.76, 118.67, 118.05, 111.91, 111.45, 107.73, 48.08, 46.91, 42.99, 21.40.

HRMS (ESI): calcd for $C_{24}H_{22}CIN_3O_2S [M + H]^+m/z 452.1214$, found 452.1194.

N-(2-bromophenyl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (326 mg, 1.0 mmol) in 2-methyltetrahydrofuran (10 mL) was added tert-butylhypochlorite (120 mg, 1.1 mmol). The reaction mixture was stirred at rt for 2 min. Then 2-bromoaniline (259 mg, 1.5 mmol) was added into the mixture. After stirring for another 15 min, the reaction mixture was concentrated under reduced pressure. Silica gel (1.5 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 1:3) to provide the desired product (300 mg, 60%) as a white solid.

Physical State: white solid.

Melting Point: 206.4-208.5 °C.

TLC: $R_f = 0.40$ (PE/CH₂Cl₂ = 1:1).

¹**H NMR (400 MHz, CDCl₃)** δ 8.15 (s, 1H), 7.74 (d, *J* = 7.7 Hz, 2H), 7.47 (t, *J* = 6.6 Hz, 2H), 7.33 (d, *J* = 11.0 Hz, 2H), 7.27 – 7.19 (m, 3H), 7.13 (t, *J* = 7.3 Hz, 1H), 6.85 (d, *J* = 8.1 Hz, 1H), 6.69 (t, *J* = 7.5 Hz, 1H), 4.98 (s, 1H), 4.55 (t, *J* = 11.4 Hz, 2H), 4.33 (d, *J* = 14.1 Hz, 1H), 3.89 (d, *J* = 11.8 Hz, 1H), 3.22 – 3.16 (m, 1H), 2.41 (s, 3H).

¹³C NMR (101 MHz, CDCl₃/CD₃OD=10:1) δ 143.90, 142.96, 136.20, 133.85, 133.02, 131.23, 129.83, 128.82, 127.54, 124.69, 122.70, 119.87, 119.31, 118.12, 112.07, 111.47, 110.63, 107.86, 48.12, 47.17, 43.01, 21.48.

HRMS (ESI): calcd for $C_{24}H_{22}BrN_3O_2S [M + H]^+m/z 496.0689$, found 496.0684.

N-(o-tolyl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (326 mg, 1.0 mmol) in 2-methyltetrahydrofuran (10 mL) was added *tert*-butylhypochlorite (120 mg, 1.1 mmol). The reaction mixture was stirred at rt for 2 min. Then o-toluidine (160 mg, 1.5 mmol) was added into the mixture. After stirring for another 2 h, the reaction mixture was concentrated under reduced pressure. Silica gel (1.6 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 1:2) to provide the desired product (370mg, 86%) as a white solid.

Physical State: white solid.

Melting Point: 156.5-157.7 °C

TLC: $R_f = 0.35$ (PE/ CH₂Cl₂ = 1:1).

¹**H NMR (400 MHz,CDCl₃)** δ 8.17 (s, 1H), 7.73 (d, *J* = 7.5 Hz, 2H), 7.46 (d, *J* = 7.7 Hz, 1H), 7.30 (d, *J* = 6.2 Hz, 3H), 7.22 – 7.17 (m, 2H), 7.15 – 7.10 (m, 2H), 6.84 (d, *J* = 8.0 Hz, 1H), 6.78 (t, *J* = 7.3 Hz, 1H), 4.96 (s, 1H), 4.50 (d, *J* = 13.9 Hz, 1H), 4.35 (d, *J* = 13.9 Hz, 1H), 3.63 (d, *J* = 11.8 Hz, 1H), 3.45 – 3.39 (m, 1H), 2.42 (s, 3H), 2.10 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 144.11, 143.79, 136.12, 134.01, 132.32, 130.95, 129.81, 127.59, 127.40, 124.80, 123.44, 122.82, 120.05, 118.58, 118.20, 111.41, 110.78, 108.01, 48.68, 47.02, 43.22, 21.56, 17.62.

HRMS (ESI): calcd for $C_{25}H_{25}N_3O_2S [M + H]^+m/z 432.1740$, found 432.1739.

N-(2-methoxyphenyl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b] indole (163 mg, 0.5 mmol) in 2-methyltetrahydrofuran (10 mL) was added tert-butylhypochlorite (60 mg, 0.55 mmol). The reaction mixture was stirred at rt for 2 min. Then 2-methoxyaniline (151 mg, 1.0 mmol) was added into the mixture. After stirring for another 1 h, the reaction mixture was concentrated under reduced pressure. Silica gel (0.9 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 1:2) to provide the desired product (153 mg, 68%) as a white solid.

Physical State: White solid

Melting Point: 175.9-176.5 °C

TCL: $R_f = 0.70 (PE/CH_2Cl_2 = 1:2)$

¹**H NMR (400 MHz, CDCl₃)** δ 8.17 (s, 1H), 7.74 (d, *J* = 7.6 Hz, 2H), 7.44 (d, *J* = 7.5 Hz, 1H), 7.30 (d, *J* = 6.6 Hz, 3H), 7.19 (t, *J* = 7.0 Hz, 1H), 7.12 (t, *J* = 7.0 Hz, 1H), 6.92 (t, *J* = 6.9 Hz, 1H), 6.80 (t, *J* = 10.2 Hz, 3H), 4.96 (s, 1H), 4.52 (d, *J* = 13.8 Hz, 1H), 4.31 (d, *J* = 14.0 Hz, 1H), 3.87 (d, *J* = 11.8 Hz, 1H), 3.81 (s, 3H), 3.20 – 3.14 (m, 1H), 2.42 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 147.39, 143.68, 136.06, 135.84, 134.12, 132.57, 129.76, 127.64, 124.91, 122.64, 121.50, 119.97, 118.20, 118.14, 111.34, 110.74, 110.27, 107.73, 55.49, 48.52, 46.84, 43.16, 21.55.

HRMS (ESI): calcd for $C_{25}H_{25}N_3O_3S [M + H]^+m/z$ 448.1689, found 448.1688.

2-tosyl-N-(2-(trifluoromethyl)phenyl)-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (326 mg, 1.0 mmol) in 2-methyltetrahydrofuran (10 mL) was added tert-butylhypochlorite (120 mg, 1.1 mmol). The reaction mixture was stirred at rt for 2 min. Then 2-aminobenzotrifluoride (242 mg, 1.5 mmol) was added into the mixture. After stirring for another 1.5 h, the reaction mixture was concentrated under reduced pressure. Silica gel (1.5 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 1:2) to provide the desired product (260 mg, 54%) as a white solid.

Physical State: white solid.

Melting Point: 184.2-184.9 °C.

TLC: $R_f = 0.55$ (PE/CH₂Cl₂ = 1:2).

¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.75 (d, J = 7.6 Hz, 2H), 7.52 – 7.44 (m, 3H), 7.32 (t, J = 9.4 Hz, 3H), 7.22 (t, J = 7.5 Hz, 1H), 7.14 (t, J = 7.3 Hz, 1H), 6.98 (d, J = 8.3 Hz, 1H), 6.87 (t, J = 7.5 Hz, 1H), 5.04 (s, 1H), 4.58 (d, J = 13.9 Hz, 1H), 4.50 (d, J = 9.1 Hz, 1H), 4.27 (d, J = 13.9 Hz, 1H), 3.99 – 3.94 (m, 1H), 3.18 – 3.12 (m, 1H), 2.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.91 , 143.77 , 143.75 , 136.20 , 133.95 , 133.60 , 131.18 , 129.84 , 127.60 , 127.18 (q, J = 5.4 Hz), 124.83 , 122.99 , 120.20 , 118.28 , 117.80 , 114.87 (q, J = 29.3 Hz), 112.58 , 111.48 , 108.41 , 48.26 , 47.32 , 43.01 , 21.53 . HRMS (ESI): calcd for C₂₅H₂₂F₃N₃O₂S [M + H]⁺m/z 486.1458, found 486.1451.

N-(3-fluorophenyl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (326 mg, 1.0 mmol) in 2-methyltetrahydrofuran (10 mL) was added tert-butylhypochlorite (120 mg, 1.1 mmol). The reaction mixture was stirred at rt for 2 min. Then 3-fluoroaniline (167 mg, 1.5 mmol) was added into the mixture. After stirring for another 2 h, the reaction mixture was concentrated under reduced pressure. Silica gel (1.5 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 1:2) to provide the desired product (355 mg, 82%) as a white solid.

Physical State: white solid.

Melting Point: 96.2-100.1 °C.

TLC: $R_f = 0.40$ (PE/CH₂Cl₂ = 1:1).

¹**H NMR (400 MHz, CDCl₃)** δ 8.11 (s, 1H), 7.73 (d, *J* = 7.6 Hz, 2H), 7.45 (d, *J* = 7.6 Hz, 1H), 7.38 – 7.27 (m, 3H), 7.23 – 7.09 (m, 3H), 6.58 – 6.42 (m, 2H), 6.38 (d, *J* = 11.1 Hz, 1H), 4.81 (s, 1H), 4.56 (d, *J* = 14.0 Hz, 1H), 4.27 (d, *J* = 13.9 Hz, 1H), 3.53 (q, *J* = 12.1 Hz, 2H), 2.43 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 164.10 (d, J = 244.0 Hz), 147.85 (d, J = 10.4 Hz), 143.92 , 136.14 , 133.94 , 131.42 , 130.88 (d, J = 10.0 Hz), 129.85 , 127.58 , 124.69 , 122.95 , 120.09 , 118.24 , 111.41 , 109.57 (d, J = 2.1 Hz), 108.15 , 105.39 (d, J = 21.4 Hz), 100.65 (d, J = 25.3 Hz), 48.37 , 46.98 , 43.12 , 21.54 .

HRMS (ESI): calcd for $C_{24}H_{22}FN_{3}O_{2}S$ [M + H]⁺m/z 436.1490, found 436.1476.

N-(3-chlorophenyl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (163 mg, 0.5 mmol) in 2-methyltetrahydrofuran (10 mL) was added *tert*-butylhypochlorite (60 mg, 0.55 mmol). The reaction mixture was stirred at rt for 2 min. Then 3-chloroaniline (127 mg, 1.0 mmol) was added into the mixture. After stirring for another 2.5 h, the reaction mixture was concentrated under reduced pressure. Silica gel (0.7 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/ EtOAc = 4:1) to provide the desired product (219 mg, 89%) as a white solid.

Physical State: white solid.

Melting Point: 105.4-112.3 °C.

TLC: $R_f = 0.31 (PE/CH_2Cl_2 = 1:1).$

¹**H NMR (400 MHz, CDCl₃)** δ 8.09 (s, 1H), 7.73 (d, *J* = 7.6 Hz, 2H), 7.45 (d, *J* = 7.7 Hz, 1H), 7.31 (t, 3H), 7.20 (t, *J* = 7.8 Hz, 1H), 7.13 (t, *J* = 7.4 Hz, 2H), 6.78 (d, *J* = 7.8 Hz, 1H), 6.66 (s, 1H), 6.57 (d, *J* = 8.1 Hz, 1H), 4.81 (s, 1H), 4.58 (d, *J* = 14.0 Hz, 1H), 4.26 (d, *J* = 14.1 Hz, 1H), 3.57 (d, *J* = 13.8 Hz, 1H), 3.48 (d, *J* = 12.1 Hz, 1H), 2.43 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 147.27, 143.94, 136.16, 135.34, 134.01, 131.37, 130.72, 129.88, 127.57, 124.69, 122.98, 120.11, 118.80, 118.26, 113.58, 112.09, 111.43, 108.21, 48.39, 46.91, 43.12, 21.56.

HRMS (ESI): calcd for $C_{24}H_{22}CIN_3O_2S [M + H]^+m/z 452.1194$, found 452.1214.

N-(3-bromophenyl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (326 mg, 1.0 mmol) in 2-methyltetrahydrofuran (10 mL) was added *tert*-butylhypochlorite (120 mg, 1.1 mmol). The reaction mixture was stirred at rt for 2 min. Then 3-bromoaniline (259 mg, 1.5 mmol) was added into the mixture. After stirring for another 15 min, the reaction mixture was concentrated under reduced pressure. Silica gel (1.6 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/ EtOAc = 4:1) to provide the desired product (360 mg, 72%) as a white solid.

Physical State: white solid.

Melting Point: 196.2-201.7 °C.

TLC: $R_f = 0.31 (PE/CH_2Cl_2 = 1:1).$

¹**H NMR (400 MHz,CDCl₃/CD₃OD = 10:1)** δ 7.69 (d, *J* = 7.6 Hz, 2H), 7.41 (d, *J* = 7.8 Hz, 1H), 7.29 (d, *J* = 6.9 Hz, 3H), 7.15 (t, *J* = 7.5 Hz, 1H), 7.09 – 7.01 (m, 2H), 6.88 (d, *J* = 7.8 Hz, 1H), 6.81 (s, 1H), 6.59 (d, *J* = 8.0 Hz, 1H), 4.75 (s, 1H), 4.55 (d, *J* = 13.9 Hz, 1H), 4.20 (d, *J* = 13.8 Hz, 1H), 3.55 (d, *J* = 14.3 Hz, 1H), 3.39 (d, *J* = 12.2 Hz, 1H), 2.39 (s, 3H).

¹³C NMR (101 MHz, CDCl₃/CD₃OD = 10:1) δ 147.51, 143.98, 136.17, 133.79, 131.21, 130.91, 129.86, 127.51, 124.55, 123.42, 122.71, 121.48, 119.79, 118.09, 116.44, 112.51, 111.42, 107.68, 48.30, 46.86, 43.13, 21.50.

HRMS (ESI): calcd for $C_{24}H_{22}BrN_3O_2S [M + H]^+m/z 496.0689$, found 496.0684.

N-(m-tolyl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (326 mg, 1.0 mmol) in 2-methyltetrahydrofuran (10 mL) was added *tert*-butylhypochlorite (120 mg, 1.1 mmol). The reaction mixture was stirred at rt for 2 min. Then 3-methylaniline (171 mg, 1.6 mmol) was added into the mixture. After stirring for another 2 h, the reaction mixture was concentrated under reduced pressure. Silica gel (1.6 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 1:2) to provide the desired product (347 mg, 80%) as a white solid.

Physical State: white solid.

Melting Point: 107.4-110.5 °C.

TLC: $R_f = 0.29$ (PE/CH₂Cl₂ = 1:1).

¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.74 (d, J = 7.5 Hz, 2H), 7.44 (d, J = 7.7 Hz, 1H), 7.34 – 7.27 (m, 3H), 7.19 (t, J = 7.5 Hz, 1H), 7.15 – 7.09 (m, 2H), 6.66 (d, J = 7.3 Hz, 1H), 6.55 (s, 2H), 4.88 (s, 1H), 4.46 (d, J = 13.9 Hz, 1H), 4.35 (d, J = 14.0 Hz, 1H), 3.67 – 3.62 (m, 1H), 3.41 – 3.35 (m, 1H), 2.42 (s, 3H), 2.31 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 146.10, 143.78, 139.60, 136.05, 134.01, 132.34, 129.81, 129.60, 127.62, 124.78, 122.73, 120.03, 119.99, 118.16, 114.95, 111.36, 111.01, 107.77, 48.74, 47.19, 43.20, 21.67, 21.56.

HRMS (ESI): calcd for $C_{25}H_{25}N_3O_2S [M + H]^+m/z 432.1741$, found 432.1739.

2-tosyl-N-(3-(trifluoromethyl)phenyl)-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (326 mg, 1.0 mmol) in 2-methyltetrahydrofuran (10 mL) was added *tert*-butylhypochlorite (120 mg, 1.1 mmol). The reaction mixture was stirred at rt for 2 min. Then 3-aminobenzotrifluoride (242 mg, 1.5 mmol) was added into the mixture. After stirring for another 1.5 h, the reaction mixture was concentrated to give crude product under reduced pressure. Silica gel (1.5 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 1:2) to provide the desired product (293 mg, 60%) as a white solid.

Physical State: white solid.

Melting Point: 211.3-211.9 °C.

TLC: $R_f = 0.44$ (PE/CH₂Cl₂ = 1:2).

¹**H NMR (400 MHz, DMSO-** d_6 **)** δ 11.21 (s, 1H), 7.76 (d, J = 7.8 Hz, 2H), 7.50 (d, J = 7.6 Hz, 1H), 7.43 (d, J = 7.5 Hz, 2H), 7.35 (t, J = 10.1 Hz, 2H), 7.12 – 6.99 (m, 4H), 6.91 (d, J = 7.4 Hz, 1H), 6.57 (d, J = 8.4 Hz, 1H), 5.04 – 4.97 (m, 1H), 4.46 (d, J = 13.9 Hz, 1H), 4.12 (d, J = 13.9 Hz, 1H), 3.47 (d, J = 11.8 Hz, 1H), 3.30 (s, 1H), 2.39 (s, 3H).

¹³C NMR (101 MHz, DMSO- d_6) δ 148.18 , 144.07 , 136.75 , 133.78 , 132.36 , 130.61 – 130.27 (m), 130.35 , 127.93 , 126.40 , 124.79 , 123.69 , 122.19 , 119.31 , 118.40 , 115.89 , 112.60 (q, J = 3.5 Hz), 111.96 , 109.21 (q, J = 4.0, 3.6 Hz), 106.58 , 48.43 , 46.04 , 43.47 , 21.46 .

HRMS (ESI): calcd for $C_{25}H_{22}F_3N_3O_2S$ [M + H]⁺m/z 486.1458, found 486.1451.

N-(3-nitrophenyl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (163 mg,0.5 mmol) in 2-methyltetrahydrofuran (10 mL) was added *tert*-butylhypochlorite (60 mg, 0.55 mmol). The reaction mixture was stirred at rt for 2 min. Then 3-nitroaniline(138 mg, 1.0 mmol) was added into the mixture. After stirring for another 2 h, the reaction mixture was concentrated under reduced pressure. Silica gel (0.7 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 1:2) to provide the desired product (210 mg, 91%) as a yellow solid.

Physical State: yellow solid.

Melting Point: 223.2-224.6 °C

TLC: R_f = 0.23 (PE/EtOAc = 2:1)

¹**H NMR (400 MHz, DMSO-***d*₆**)** δ 11.21 (s, 1H), 7.75 (d, *J* = 7.3 Hz, 2H), 7.56 (s, 1H), 7.51 (d, *J* = 7.5 Hz, 1H), 7.43 (d, *J* = 6.8 Hz, 4H), 7.32 (d, *J* = 7.7 Hz, 1H), 7.19 (d, *J* = 6.1 Hz, 1H), 7.11 (t, 1H), 7.00 (t, *J* = 6.7 Hz, 1H), 6.83 (d, *J* = 7.9 Hz, 1H), 5.02 (s, 1H), 4.49 (d, *J* = 13.8 Hz, 1H), 4.07 (d, *J* = 14.1 Hz, 1H), 3.52 (d, *J* = 11.6 Hz, 1H), 3.26 (d, *J* = 11.8 Hz, 1H), 2.38 (s, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 149.44, 148.75, 144.09, 136.73, 133.74, 132.04, 130.67, 130.35, 127.95, 124.75, 122.27, 119.35, 118.93, 118.44, 111.97, 110.93, 106.73, 106.59, 48.27, 46.07, 43.45, 39.98, 21.46.

HRMS (ESI): calcd for $C_{24}H_{22}N_4O_4S [M + H]^+m/z 463.1435$, found 463.1468.

methyl 3-((2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-yl)amino)benzoate

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b] indole (163 mg, 0.5mmol) in 2-methyltetrahydrofuran (10 mL) was added tert-butylhypochlorite (60 mg, 0.55 mmol). The reaction mixture was stirred at rt for 2 min. Then methyl 3-aminobenzoate (151 mg, 1.0 mmol) was added into the mixture. After stirring for another 1 h, the reaction mixture was concentrated under reduced pressure. Silica gel (0.9 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 1:3) to provide the desired product (216 mg, 92%) as a white solid.

Physical State: White solid

Melting Point: 198.7-199.2 °C.

TCL: R_f = 0.70 (PE/EtOAc = 2:1).

¹**H NMR (400 MHz, CDCl₃)** δ 8.15 (s, 1H), 7.72 (d, *J* = 7.6 Hz, 2H), 7.49 – 7.42 (m, 2H), 7.39 (s, 1H), 7.33 – 7.28 (m, 3H), 7.26 (s, 1H), 7.19 (t, *J* = 7.4 Hz, 1H), 7.11 (t, *J* = 7.2 Hz, 1H), 6.86 (d, *J* = 8.0 Hz, 1H), 4.90 (s, 1H), 4.60 (d, *J* = 13.9 Hz, 1H), 4.22 (d, *J* = 13.9 Hz, 1H), 3.91 (s, 3H), 3.61 (d, *J* = 12.0 Hz, 1H), 3.44 (d, *J* = 11.9 Hz, 1H), 2.42 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 167.32, 146.17, 143.84, 136.18, 134.01, 131.55, 131.38, 129.83, 129.69, 127.56, 124.69, 122.90, 120.03, 120.00, 118.68, 118.21, 114.09, 111.43, 108.12, 52.15, 48.42, 46.94, 43.15, 21.53.

HRMS (ESI): calcd for $C_{26}H_{25}N_3O_4S [M + H]^+m/z 476.1639$, found 476.1644.

N-(4-fluorophenyl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (326 mg, 1.0 mmol) in 2-methyltetrahydrofuran (10 mL) was added tert-butylhypochlorite (120 mg, 1.1 mmol). The reaction mixture was stirred at rt for 2 min. Then 4-fluoroaniline (167 mg, 1.5 mmol) was added into the mixture. After stirring for another 2 h, he reaction mixture was concentrated under reduced pressure. Silica gel (1.5 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 1:3) to provide the desired product (265 mg, 61%) as a white solid.

Physical State: white solid.

Melting Point: 164.2-165.4 °C.

TLC: $R_f = 0.30 (PE/CH_2Cl_2 = 1:1).$

¹H NMR (400 MHz,CDCl₃) δ 8.13 (s, 1H), 7.73 (d, J = 7.7 Hz, 2H), 7.44 (d, J = 7.8 Hz, 1H), 7.31 (t, J = 7.5 Hz, 3H), 7.20 (t, J = 7.4 Hz, 1H), 7.12 (t, J = 7.2 Hz, 1H), 6.94 (t, J = 7.9 Hz, 2H), 6.70 – 6.65 (m, 2H), 4.77 (s, 1H), 4.54 (d, J = 13.9 Hz, 1H), 4.25 (d, J = 13.9 Hz, 1H), 3.54 – 3.45 (m, 2H), 2.42 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 156.66 (d, J = 237.5 Hz), 143.88 , 142.30 (d, J = 2.1 Hz), 136.11 , 133.87 , 131.89 , 129.84 , 127.59 , 124.72 , 122.87 , 120.05 , 118.20 , 116.19 (d, J = 22.4 Hz), 115.58 (d, J = 7.5 Hz), 111.38 , 107.98 , 48.31 , 48.23 , 43.22 , 21.54 . HRMS (ESI): calcd for C₂₄H₂₂FN₃O₂S [M + H]⁺m/z 436.1490, found 436.1476.

N-(4-chlorophenyl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (326 mg, 1.0 mmol) in 2-methyltetrahydrofuran (10 mL) was added tert-butylhypochlorite (120 mg, 1.1 mmol). The reaction mixture was stirred at rt for 2 min. Then 4-chloroaniline (255 mg, 2.0 mmol) was added into the mixture. After stirring for another 2 h, the reaction mixture was concentrated under reduced pressure. Silica gel (1.5 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 1:2) to provide the desired product (325 mg, 72%) as a white solid.

Physical State: white solid.

Melting Point: 192.5-193.2 °C.

TLC: $R_f = 0.34$ (PE/CH₂Cl₂ = 1:2).

¹**H NMR (400 MHz, CDCl₃)** δ 8.14 (s, 1H), 7.72 (d, *J* = 7.5 Hz, 2H), 7.44 (d, *J* = 7.8 Hz, 1H), 7.31 (t, 3H), 7.19 (dd, *J* = 14.2, 7.4 Hz, 3H), 7.12 (t, *J* = 7.4 Hz, 1H), 6.64 (d, *J* = 7.6 Hz, 2H), 4.81 (s, 1H), 4.54 (d, *J* = 13.9 Hz, 1H), 4.25 (d, *J* = 13.9 Hz, 1H), 3.55 – 3.45 (m, 2H), 2.42 (s, 3H).

¹³C NMR (101 MHz, CDCl₃/CD₃OD = 15:1) δ 144.72, 143.97, 136.19, 133.60, 131.40, 129.82, 129.37, 127.49, 124.53, 123.38, 122.59, 119.69, 118.01, 115.33, 111.40, 107.52, 48.11, 47.41, 43.17, 21.42.

HRMS (ESI): calcd for $C_{24}H_{22}CIN_3O_2S [M + H]^+m/z 452.1194$, found 452.1214.

N-(4-bromophenyl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (326 mg, 1.0 mmol) in 2-methyltetrahydrofuran (10 mL) was added tert-butylhypochlorite (120 mg, 1.1 mmol). The reaction mixture was stirred at rt for 2 min. Then 4-bromoaniline (207 mg, 1.2 mmol) was added into the mixture. After stirring for another 15 min, he reaction mixture was concentrated under reduced pressure. Silica gel (1.4 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 1:3) to provide the desired product (287 mg, 58%) as a white solid.

Physical State: white solid.

Melting Point: 196.9-197.9 °C.

TLC: $R_f = 0.40$ (PE/CH₂Cl₂ = 1:1).

¹**H NMR (400 MHz, DMSO-***d*₆**)** δ 11.20 (s, 1H), 7.74 (d, *J* = 7.6 Hz, 2H), 7.49 (d, *J* = 7.8 Hz, 1H), 7.43 (d, *J* = 7.8 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 1H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.09 (t, *J* = 7.5 Hz, 1H), 6.99 (t, *J* = 7.4 Hz, 1H), 6.73 (d, *J* = 8.1 Hz, 2H), 6.27 (d, *J* = 8.8 Hz, 1H), 4.90 (d, *J* = 7.7 Hz, 1H), 4.41 (d, *J* = 13.9 Hz, 1H), 4.11 (d, *J* = 13.9 Hz, 1H), 3.42 (d, *J* = 3.9 Hz, 1H), 3.28 (d, *J* = 9.7 Hz, 1H), 2.39 (s, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 146.89, 144.08, 136.71, 133.65, 132.50, 132.04, 130.37, 127.94, 124.77, 122.13, 119.28, 118.35, 115.01, 111.95, 107.47, 106.47, 48.17, 46.23, 43.49, 21.49.

HRMS (ESI): calcd for $C_{24}H_{22}BrN_3O_2S [M + H]^+m/z 496.0869$, found 496.0684.

N-(p-tolyl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (326 mg, 1.0 mmol) in 2-methyltetrahydrofuran (10 mL) was added *tert*-butylhypochlorite (120 mg, 1.1 mmol). The reaction mixture was stirred at rt for 2 min. Then 4-methylaniline (171 mg, 1.6 mmol) was added into the mixture. After stirring for another 2 h, the reaction mixture was concentrated under reduced pressure. Silica gel (1.6 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 1:3) to provide the desired product (259 mg, 60%) as a white solid.

Physical State: white solid.

Melting Point: 187.9-189.2 °C.

TLC: $R_f = 0.25$ (PE/CH₂Cl₂ = 1:2)

¹H NMR (400 MHz, DMSO-*d*₆) δ 11.17 (s, 1H), 7.73 (d, *J* = 7.6 Hz, 2H), 7.49 – 7.41 (m, 3H), 7.31 (d, *J* = 8.0 Hz, 1H), 7.08 (t, *J* = 7.4 Hz, 1H), 7.00 – 6.93 (m, 3H), 6.67 (d, *J* = 7.5 Hz, 2H), 5.72 (d, *J* = 9.2 Hz, 1H), 4.89 (s, 1H), 4.32 (d, *J* = 13.9 Hz, 1H), 4.19 (d, *J* = 13.9 Hz, 1H), 3.40 (d, *J* = 11.0 Hz, 1H), 3.29 – 3.25 (m, 1H), 2.39 (s, 3H), 2.19 (s, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 145.25, 144.04, 136.71, 133.79, 133.23, 130.38, 130.01, 127.90, 125.44, 124.86, 121.97, 119.22, 118.26, 113.41, 111.95, 106.20, 48.39, 46.75, 43.56, 21.47, 20.61.

HRMS (ESI): calcd for $C_{25}H_{25}N_3O_2S [M + H]^+m/z 432.1740$, found 432,1739.

N-(4-methoxyphenyl)-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (163mg, 0.5 mmol) in 2-methyltetrahydrofuran (10 mL) was added *tert*-butylhypochlorite (60 mg, 0.55 mmol). The reaction mixture was stirred at rt for 10 min. Then 4-methoxyaniline (123 mg, 1.0 mmol) was added into the mixture. After stirring for another 1 h, the organic was concentrated under reduced pressure. Silica gel (0.8 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 1:2) to provide the desired product (147 mg, 66%) as a brown oil.

Physical State: brown oil.

TLC: R_f = 0.25 (PE/EtOAc) = 4:1

¹**H NMR (400 MHz, CDCl₃)** δ 8.20 (s, 1H), 7.72 (d, *J* = 7.5 Hz, 2H), 7.43 (d, *J* = 7.7 Hz, 1H), 7.33 – 7.27 (m, 3H), 7.18 (t, *J* = 7.5 Hz, 1H), 7.10 (d, *J* = 7.2 Hz, 1H), 6.82 (d, *J* = 7.4 Hz, 2H), 6.71 (d, *J* = 7.9 Hz, 2H), 4.75 (s, 1H), 4.49 (d, *J* = 13.8 Hz, 1H), 4.27 (d, *J* = 13.8 Hz, 1H), 3.78 (s, 3H), 3.52 – 3.43 (m, 2H), 2.42 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 153.37, 143.78, 139.87, 136.08, 133.90, 132.42, 129.80, 127.61, 124.76, 122.69, 119.94, 118.14, 116.39, 115.20, 111.36, 107.69, 55.72, 48.78, 48.47, 43.28, 21.54.

HRMS (ESI): calcd for $C_{25}H_{25}N_3O_3S [M + H]^+m/z$ 448.1689, found 448.1688.

2-tosyl-N-(4-(trifluoromethyl)phenyl)-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (326 mg, 1.0 mmol) in 2-methyltetrahydrofuran (10 mL) was added tert-butylhypochlorite (120 mg, 1.1 mmol). The reaction mixture was stirred at rt for 2 min. Then 4-aminobenzotrifluoride (242 mg, 1.5 mmol) was added into the mixture. After stirring for another 1.5 h, the reaction mixture was concentrated under reduced pressure. Silica gel (1.6 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 1:3) to provide the desired product (340 mg, 70%) as a white solid.

Physical State: white solid.

Melting Point: 224.3-225.7 °C.

TLC: $R_f = 0.43$ (PE/CH₂Cl₂ = 1:2).

¹**H NMR (400 MHz, DMSO-***d*₆**)** δ 11.22 (s, 1H), 7.75 (d, *J* = 7.6 Hz, 2H), 7.50 (d, *J* = 7.7 Hz, 1H), 7.44 (d, *J* = 7.9 Hz, 4H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.10 (t, *J* = 7.5 Hz, 1H), 7.00 (t, *J* = 7.4 Hz, 1H), 6.89 - 6.81 (m, 3H), 5.00 (s, 1H), 4.45 (d, *J* = 13.9 Hz, 1H), 4.09 (d, *J* = 14.0 Hz, 1H), 3.50 - 3.45 (m, 1H), 3.27 (d, *J* = 10.8 Hz, 1H), 2.39 (s, 3H).

¹³**C NMR (101 MHz, DMSO-***d***₆)** δ 150.71, 144.09, 136.75, 133.65, 132.07, 130.36, 127.97, 126.82 (q), 124.61 (q), 122.22, 119.32, 118.42, 116.38 (d, *J* = 31.9 Hz), 112.30, 111.96, 106.68, 48.31, 45.88, 43.47, 21.46.

HRMS (ESI): calcd for $C_{25}H_{22}F_3N_3O_2S [M + H]^+m/z 486.1458$, found 486.1451.

N-(4-nitrophenyl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (163 mg, 0.5 mmol) in 2-methyltetrahydrofuran (10 mL) was added tert-butylhypochlorite (60 mg, 0.55 mmol). The reaction mixture was stirred at rt for 2 min. Then 4-nitroaniline (138 mg, 1.0 mmol) was added into the mixture. After stirring for another 2 h, the reaction mixture was concentrated under reduced pressure. Silica gel (0.7 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 1:3) to provide the desired product (118 mg, 51%) as a yellow solid.

Physical State: yellow solid.

Melting Point: 239.8-241.3 °C

TLC: R_f = 0.30 (PE/EtOAc = 2:1)

¹**H NMR (400 MHz, DMSO-***d*₆**)** δ 11.26 (s, 1H), 8.06 (d, *J* = 9.8 Hz, 2H), 7.75 (d, *J* = 7.3 Hz, 2H), 7.70 (d, *J* = 7.7 Hz, 1H), 7.52 (d, *J* = 7.9 Hz, 1H), 7.44 (d, *J* = 7.8 Hz, 2H), 7.33 (d, *J* = 7.7 Hz, 1H), 7.12 (t, 1H), 7.01 (t, 1H), 6.87 (d, *J* = 8.3 Hz, 2H), 5.09 (s, 1H), 4.54 (d, 1H), 4.04 (d, *J* = 14.1 Hz, 1H), 3.60 (d, *J* = 11.6 Hz, 1H), 3.21 (d, *J* = 11.7 Hz, 1H), 2.39 (s, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 153.57, 144.13, 136.81, 136.77, 133.65, 131.18, 130.38, 127.97, 126.72, 124.70, 122.44, 119.43, 118.54, 112.00, 107.10, 99.98, 48.46, 45.95, 43.42, 21.47.

HRMS (ESI): calcd for $C_{24}H_{22}N_4O_4S$ [M + H]⁺m/z 463.1435, found 463.1468.

2-(methylsulfonyl)-N-phenyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-amine

To a solution of 2-(methylsulfonyl)-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (251 mg, 1.0 mmol) in 2-methyltetrahydrofuran (10 mL) was added tert-butylhypochlorite (119 mg, 1.1 mmol). The reaction mixture was stirred at rt for 2 min. Then aniline (186 mg, 2.0 mmol) was added into the mixture. After stirring for another 1 h, the reaction mixture was concentrated under reduced pressure. Silica gel (0.6 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 1:2) to provide the desired product (207 mg, 61%) as a white solid.

Physical State: white solid.

Melting Point: 113.4-113.8 °C

TLC: R_f = 0.78 (PE/EtOAc = 2:1)

¹H NMR (400 MHz, CDCl₃/CD₃OD = 20:1) δ 7.43 (d, *J* = 7.5 Hz, 1H), 7.30 (d, *J* = 7.9 Hz, 1H), 7.20 (t, *J* = 6.7 Hz, 3H), 7.11 (t, *J* = 7.1 Hz, 1H), 6.80 (t, *J* = 6.9 Hz, 1H), 6.72 (d, *J* = 7.4 Hz, 2H), 4.86 (s, 1H), 4.60 (d, *J* = 14.1 Hz, 1H), 4.44 (d, *J* = 14.1 Hz, 1H), 3.68 (d, *J* = 12.3 Hz, 1H), 3.54 (d, *J* = 11.8 Hz, 1H), 2.83 (s, 3H).

¹³C NMR (101 MHz, CDCl₃/CD₃OD = 20:1) δ 146.00 , 136.17 (d, *J* = 14.3 Hz), 132.02 (d, *J* = 14.2 Hz), 129.73 , 124.62 (d, *J* = 3.9 Hz), 122.77 , 119.95 , 119.20 , 118.11 , 114.22 , 111.48 (d, *J* = 5.0 Hz), 107.68 (d, *J* = 5.1 Hz), 48.13 , 47.39 , 43.03 , 36.40 .

HRMS (ESI): calcd for $C_{18}H_{19}N_3O_2S [M + H]^+m/z 342.1271$, found 342.1271.

1-(4-((3,4-dichlorophenyl)amino)-1,3,4,5-tetrahydro-2H-pyrido[4,3-b]indol-2yl)ethan-1-one

To a solution of 1-(1,3,4,5-tetrahydro-2H-pyrido[4,3-b]indol-2-yl)ethan-1-one (107 mg, 0.5 mmol) in 2-methyltetrahydrofuran (10 mL) was added *tert*-butylhypochlorite (65 mg, 0.55 mmol). The reaction mixture was stirred at rt for 10 min. Then 3,4-dichloroaniline (162 mg, 1.0 mmol) was added into the mixture. After stirring for another 2 h, the organic was concentrated under reduced pressure. Silica gel (1.2 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/EtOAc = 1:1) to provide the desired product (75 mg, 40%) as a white solid.

Physical State: white solid.

Melting Point: 219.6-220.0 °C

TLC: R_f = 0.32 (PE/EtOAc = 2:1)

¹H NMR (400 MHz, DMSO-*d*₆) δ 11.15 (s, 1H), 7.50 (d, *J* = 7.6 Hz, 1H), 7.37 – 7.28 (m, 2H), 7.11 (t, *J* = 7.5 Hz, 1H), 7.06 (s, 0.7H), 7.04 – 6.98 (m, 1H), 6.96 (s, 0.3H), 6.81 (d, *J* = 8.7 Hz, 0.7H), 6.73 (d, *J* = 8.6 Hz, 0.3H), 6.63 (d, *J* = 8.2 Hz, 0.7H), 6.42 (d, *J* = 8.5 Hz, 0.3H), 5.19 (d, *J* = 15.7 Hz, 0.6H), 4.92 (d, *J* = 7.3 Hz, 0.7H), 4.81 (d, *J* = 8.6 Hz, 0.4H), 4.76 (s, 0.2H), 4.62 (d, *J* = 15.2 Hz, 0.3H), 4.24 (d, *J* = 15.8 Hz, 0.8H), 4.09 – 4.04 (m, 0.2H), 3.91 (d, *J* = 13.7 Hz, 0.7H), 3.63 (d, *J* = 12.9 Hz, 1H), 2.14 (s, 0.8H), 1.89 (s, 2.2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 169.65 (d, *J* = 59.7 Hz), 148.17 (d, *J* = 22.3 Hz), 136.71 (d, *J* = 12.2 Hz), 132.83 (d, *J* = 86.7 Hz), 131.94 (d, *J* = 23.1 Hz), 131.14 (d, *J* = 21.4 Hz), 124.93 (d, *J* = 14.5 Hz), 122.09 (d, *J* = 4.7 Hz), 119.21 , 118.45 , 117.33 (d, *J* = 14.7 Hz), 113.76 (d, *J* = 29.8 Hz), 113.40 (d, *J* = 14.2 Hz), 111.94 (d, *J* = 5.6 Hz), 108.38 (d, *J* = 79.6 Hz), 47.87 , 46.20 (d, *J* = 25.0 Hz), 43.33 (d, *J* = 10.4 Hz), 22.04 (d, *J* = 78.2 Hz). HRMS (ESI): calcd for C₁₉H₁₇Cl₂N₃O [M + H]⁺m/z 374.0821, found 374.0819.

methyl 4-((3,4-dichlorophenyl)amino)-1,3,4,5-tetrahydro-2H-pyrido[4,3-b]indole-2carboxylate

To a solution of *methyl* 1,3,4,5-tetrahydro-2H-pyrido[4,3-b]indole-2-carboxylate (163mg, 0.5 mmol) in 2-methyltetrahydrofuran (10 mL) was added *tert*butylhypochlorite (65 mg, 0.55 mmol). The reaction mixture was stirred at rt for 10 min. Then 3,4-dichloroaniline (162 mg, 1.0 mmol) was added into the mixture. After stirring for another 1 h, the organic was concentrated under reduced pressure. Silica gel (1.5 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 1:2) to provide the desired product (120 mg, 62%) as white solid.

Physical State: white solid.

Melting Point: 204.3-205.2 °C

TLC: R_f = 0.32 (PE/EtOAc = 4:1)

¹**H NMR (400 MHz, CDCl**₃) δ 8.15 (s, 1H), 7.49 (d, *J* = 7.6 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.26 – 7.19 (m, 2H), 7.14 (t, *J* = 7.3 Hz, 1H), 6.83 (s, 0.9H), 6.76 (s, 0.1H), 6.56 (d, *J* = 8.0 Hz, 0.9H), 6.50 (d, *J* = 10.2 Hz, 0.1H), 4.76 (t, *J* = 52.5 Hz, 3H), 3.97 (d, *J* = 42.3 Hz, 1.6H), 3.73 (d, *J* = 22.3 Hz, 4.4H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 156.34, 148.27, 136.67, 132.72, 131.84, 131.04, 124.87, 122.09, 119.23, 118.39, 117.29, 113.92, 113.52, 111.94, 108.10 (d, *J* = 41.4 Hz), 52.92, 46.01, 45.80, 41.55.

HRMS (ESI): calcd for C₁₉H₁₇Cl₂N₃O₂ [M - H]⁻*m*/*z* 388.0625, found 388.0626.

N-(3,4-dichlorophenyl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (163 mg, 0.5 mmol) in 2-methyltetrahydrofuran (10 mL) was added tert-butylhypochlorite (60 mg, 0.55 mmol). The reaction mixture was stirred at rt for 2 min. Then 3,4-dichloroaniline (93 mg, 1.0 mmol) was added into the mixture. After stirring for another 1 h, the reaction mixture was concentrated under reduced pressure. Silica gel (0.8 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/EtOAc = 2:1) to provide the desired product (200 mg, 90%) as a white solid.

Physical State: white solid.

Melting Point: 223.6-225.5°C.

TLC: $R_f = 0.30 (PE/CH_2Cl_2 = 1:1).$

¹**H NMR (400 MHz, DMSO-***d*₆**)** δ 11.20 (s, 1H), 7.75 (d, *J* = 7.5 Hz, 2H), 7.49 (d, *J* = 7.6 Hz, 1H), 7.44 (d, *J* = 7.5 Hz, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 7.10 (t, *J* = 7.2 Hz, 1H), 7.00 (d, *J* = 8.9 Hz, 3H), 6.75 (d, *J* = 8.6 Hz, 1H), 6.54 (s, 1H), 4.93 (s, 1H), 4.47 (d, *J* = 13.8 Hz, 1H), 4.05 (d, *J* = 12.9 Hz, 1H), 3.49 (d, *J* = 11.7 Hz, 1H), 3.19 (d, *J* = 11.6 Hz, 1H), 2.39 (s, 3H).

¹³C NMR (101 MHz, DMSO-d₆) δ 147.82, 144.08, 136.74, 133.69, 132.11, 131.92, 131.10, 130.35, 127.97, 124.74, 122.25, 119.34, 118.41, 117.44, 113.85, 113.34, 111.97, 106.68, 48.27, 46.10, 43.44, 21.49.

HRMS (ESI): calcd for C₂₄H₂₁Cl₂N₃O₂S [M - H]⁻*m*/*z* 484.0569, found 484.0568.

N-(3,5-difluorophenyl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (326 mg, 1.0 mmol) in 2-methyltetrahydrofuran (10 mL) was added tert-butylhypochlorite (120 mg, 1.1 mmol). The reaction mixture was stirred at rt for 2 min. Then 3,5-difluoroaniline (193 mg, 1.5 mmol) was added into the mixture. After stirring for another 6 h, the reaction mixture was concentrated under reduced pressure. Silica gel (1.4S g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 1:2) to provide the desired product (320 mg, 71%) as a white solid.

Physical State: white solid.

Melting Point: 218.5-219.8 °C

TLC: $R_f = 0.42$ (PE/CH₂Cl₂ = 1:1).

¹**H NMR (400 MHz, CDCl₃)** δ 8.08 (s, 1H), 7.73 (d, *J* = 7.6 Hz, 2H), 7.45 (d, *J* = 7.9 Hz, 1H), 7.32 (d, *J* = 6.7 Hz, 3H), 7.21 (t, *J* = 7.4 Hz, 1H), 7.13 (t, *J* = 7.3 Hz, 1H), 6.23 (t, *J* = 8.8 Hz, 1H), 6.16 (d, *J* = 8.3 Hz, 2H), 4.74 (s, 1H), 4.64 (d, *J* = 14.0 Hz, 1H), 4.20 (d, *J* = 14.0 Hz, 1H), 3.67 (d, *J* = 12.0 Hz, 1H), 3.39 (d, *J* = 12.1 Hz, 1H), 2.43 (s, 3H).

¹³C NMR (101 MHz, CDCl₃/CD₃OD=20:1) δ 165.44 (d, *J* = 15.9 Hz), 163.00 (d, *J* = 15.9 Hz), 146.28 (d, *J* = 447.1 Hz), 136.26 (d, *J* = 14.2 Hz), 133.78 , 130.74 (d, *J* = 13.9 Hz), 129.86 , 127.52 , 124.53 (d, *J* = 4.0 Hz), 122.84 , 119.88 , 118.15 , 111.44 (d, *J* = 4.9 Hz), 107.96 (d, *J* = 5.3 Hz), 96.61 – 96.03 (m), 93.53 (t, *J* = 26.0 Hz), 48.16 , 46.71 , 43.06 , 21.45 .

HRMS (ESI): calcd for $C_{24}H_{21}F_2N_3O_2S$ [M - H]⁻m/z 452.1250, found 452.1250.

N-(2,6-difluorophenyl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (326 mg, 1.0 mmol) in 2-methyltetrahydrofuran (10 mL) was added tert-butylhypochlorite (120 mg, 1.1 mmol). The reaction mixture was stirred at rt for 2 min. Then 2,6-difluoroaniline (246 mg, 1.9 mmol) was added into the mixture. After stirring for another 6 h, the reaction mixture was concentrated under reduced pressure. Silica gel (1.6 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 1:2) to provide the desired product (381 mg, 84%) as a white solid.

Physical State: white solid.

Melting Point: 133.2-134.2 °C

TLC: $R_f = 0.43$ (PE/CH₂Cl₂ = 1:1).

¹**H NMR (400 MHz, CDCl₃)** δ 8.21 (s, 1H), 7.75 (d, *J* = 7.6 Hz, 2H), 7.45 (d, *J* = 7.8 Hz, 1H), 7.32 (d, *J* = 7.2 Hz, 3H), 7.21 (t, *J* = 7.6 Hz, 1H), 7.12 (t, *J* = 7.4 Hz, 1H), 6.89 (t, *J* = 8.1 Hz, 2H), 6.83 – 6.76 (m, 1H), 4.95 (s, 1H), 4.65 (d, *J* = 13.9 Hz, 1H), 4.11 (d, *J* = 13.8 Hz, 1H), 3.71 (d, *J* = 12.3 Hz, 1H), 3.29 (d, *J* = 12.1 Hz, 1H), 2.42 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 153.89 (dd, J = 241.7, 6.9 Hz), 143.84, 136.23, 133.76, 131.83, 129.81, 127.67, 124.68, 123.64 (t, J = 14.3 Hz), 122.91, 120.00, 119.43 (t, J = 9.5 Hz), 118.29, 112.07 – 111.66 (m), 111.42, 107.79, 49.52, 48.96, 43.24, 21.54. HRMS (ESI): calcd for C₂₄H₂₁F₂N₃O₂S [M - H]⁻m/z 452.1250, found 452.1250.

N-(3-chloro-2-methylphenyl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (326 mg, 1.0 mmol) in 2-methyltetrahydrofuran (10 mL) was added tert-butylhypochlorite (120 mg, 1.1 mmol). The reaction mixture was stirred at rt for 2 min. Then 3-chloro-2-methylaniline 212 mg, 1.5 mmol) was added into the mixture. After stirring for another 6 h, the reaction mixture was concentrated under reduced pressure. Silica gel (1.4 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 1:3) to provide the desired product (312 mg, 67%) as a pink solid.

Physical State: pink solid.

Melting Point: 80.5-84.5 °C

TLC: $R_f = 0.46$ (PE/CH₂Cl₂ = 1:1).

¹**H NMR (400 MHz, CDCl₃)** δ 8.13 (s, 1H), 7.71 (d, *J* = 7.6 Hz, 2H), 7.47 (d, *J* = 7.7 Hz, 1H), 7.31 (t, 3H), 7.22 (t, *J* = 7.5 Hz, 1H), 7.16 – 7.06 (m, 2H), 6.88 (d, *J* = 7.9 Hz, 1H), 6.73 (d, *J* = 8.0 Hz, 1H), 4.91 (s, 1H), 4.56 (d, *J* = 13.9 Hz, 1H), 4.31 (d, *J* = 14.0 Hz, 1H), 3.57 – 3.48 (m, 2H), 2.42 (s, 4H), 2.14 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 145.34, 143.93, 136.18, 135.30, 133.98, 131.63, 129.80, 127.52, 127.43, 124.72, 122.98, 121.16, 120.12, 119.47, 118.25, 111.46, 109.16, 108.29, 48.31, 47.17, 43.10, 21.55, 13.68.

HRMS (ESI): calcd for $C_{25}H_{24}CIN_3O_2S [M + H]^+m/z 466.1351$, found 466.1391.

N-(2-fluoro-5-methylphenyl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (326 mg, 1.0 mmol) in 2-methyltetrahydrofuran (10 mL) was added *tert*-butylhypochlorite (120 mg, 1.1 mmol). The reaction mixture was stirred at rt for 2 min. Then 2-fluoro-5-methylaniline (188 mg, 1.5 mmol) was added into the mixture. After stirring for another 6 h, the reaction mixture was concentrated under reduced pressure. Silica gel (1.6 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 1:2) to provide the desired product (349 mg, 78%) as a white solid.

Physical State: white solid.

Melting Point: 95.2-96.0 °C

TLC: $R_f = 0.44$ (PE/CH₂Cl₂ = 1:1).

¹**H NMR (400 MHz, CDCl**₃) δ 8.14 (s, 1H), 7.74 (d, *J* = 7.6 Hz, 2H), 7.45 (d, *J* = 7.9 Hz, 1H), 7.31 (d, *J* = 7.6 Hz, 3H), 7.20 (t, *J* = 7.5 Hz, 1H), 7.12 (t, *J* = 7.3 Hz, 1H), 6.90 (t, 1H), 6.70 (d, *J* = 8.2 Hz, 1H), 6.55 (t, *J* = 6.4 Hz, 1H), 4.91 (s, 1H), 4.48 – 4.38 (m, 2H), 3.76 (s, 1H), 3.33 – 3.27 (m, 1H), 2.42 (s, 3H), 2.32 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 150.31 (d, J = 236.8 Hz), 143.82 , 136.13 , 134.51 (d, J = 3.5 Hz), 134.08 , 133.93 (d, J = 11.8 Hz), 131.76 , 129.81 , 127.58 , 124.80 , 122.85 , 120.06 , 119.01 (d, J = 6.9 Hz), 118.22 , 114.92 (d, J = 18.9 Hz), 114.08 (d), 111.39 , 108.07 , 48.53 , 47.03 , 43.06 , 21.55 , 21.29 .

HRMS (ESI): calcd for $C_{25}H_{24}FN_{3}O_{2}S$ [M + H]⁺m/z 450.1646, found 450.1634.

8-bromo-N-(3,4-dichlorophenyl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4amine

To a solution of 8-bromo-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (405 mg, 1.0 mmol) in 2-methyltetrahydrofuran (10 mL) was added *tert*-butylhypochlorite (120 mg, 1.1 mmol). The reaction mixture was stirred at rt for 2 min. Then 3,4-dichloroaniline (210 mg, 1.3 mmol) was added into the mixture. After stirring for another 40 min, the reaction mixture was diluted with EtOAc (20 mL), washed with aqueous saturated NaHCO₃ solution (30 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Silica gel (1.5 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 1:2) to provide the desired product (395 mg, 70%) as a white solid.

Physical State: white solid.

Melting Point: 241.6-242.7 °C.

TLC: $R_f = 0.40$ (PE/EtOAc = 4:1)

¹H NMR (400 MHz, DMSO-*d*₆) δ 11.44 (s, 1H), 7.75 (d, J = 8.7 Hz, 3H), 7.44 (d, J = 7.6 Hz, 2H), 7.35 – 7.27 (m, 2H), 7.21 (d, J = 8.6 Hz, 1H), 6.99 (s, 1H), 6.75 (d, J = 8.8 Hz, 1H), 6.58 (d, J = 8.6 Hz, 1H), 4.95 (d, J = 6.3 Hz, 1H), 4.45 (d, J = 14.2 Hz, 1H), 4.05 (d, J = 14.0 Hz, 1H), 3.44 (d, J = 12.6 Hz, 1H), 3.21 (d, J = 11.3 Hz, 1H), 2.39 (s, 3H).

¹³C NMR (101 MHz, DMSO-d₆) δ 147.75, 144.13, 135.42, 133.86, 133.56, 131.92, 131.13, 130.34, 128.00, 126.54, 124.69, 121.05, 117.55, 113.89, 113.86, 113.40, 111.83, 106.66, 48.22, 46.06, 43.36, 21.49.

HRMS (ESI): calcd for C₂₄H₂₀BrCl₂N₃O₂S [M - H]⁻*m*/*z* 561.9764, found 561.9763.

N-(3,4-dichlorophenyl)-8-fluoro-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4amine

To a solution of *8-fluoro-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido*[4,3-b]indole (344 mg, 1.0 mmol) in 2-methyltetrahydrofuran (10 mL) was added *tert*-butylhypochlorite (120 mg, 1.1 mmol). The reaction mixture was stirred at rt for 2 min. Then 3,4-dichloroaniline (194 mg, 1.2 mmol) was added into the mixture. After stirring for another 1 h, the reaction mixture was diluted with EtOAc (20 mL), washed with aqueous saturated NaHCO₃ solution (30 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Silica gel (1.4 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 1:2) to provide the desired product (344 mg, 68%) as a light pink solid.

Physical State: light pink solid.

Melting Point: 215.7-216.4 °C.

TLC: $R_f = 0.39$ (PE/EtOAc = 4:1).

¹H NMR (400 MHz, DMSO-*d*₆) δ 11.30 (s, 1H), 7.74 (d, J = 7.7 Hz, 2H), 7.44 (d, J = 7.7 Hz, 2H), 7.32 (d, J = 8.9 Hz, 2H), 7.29 (d, J = 4.5 Hz, 1H), 7.04 – 6.89 (m, 2H), 6.74 (d, J = 8.8 Hz, 1H), 6.55 (d, J = 8.7 Hz, 1H), 4.93 (d, J = 7.6 Hz, 1H), 4.43 (d, J = 14.0 Hz, 1H), 4.02 (d, J = 13.6 Hz, 1H), 3.45 (d, J = 12.2 Hz, 1H), 3.20 (d, J = 11.3 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 157.21 (d, J = 231.8 Hz), 147.75 , 144.13 , 134.25 , 133.63 , 133.36 , 131.91 , 131.11 , 130.35 , 127.96 , 124.88 (d, J = 10.3 Hz), 117.51 , 113.85 , 113.37 , 112.89 (d, J = 9.8 Hz), 110.27 (d, J = 26.0 Hz), 107.05 (d, J = 4.6 Hz), 103.52 (d, J = 23.6 Hz), 48.20 , 46.11 , 43.35 , 21.47 .

HRMS (ESI): calcd for C₂₄H₂₀FCl₂N₃O₂S [M - H]⁻*m*/*z* 502.0565, found 502.0565.

N-(3,4-dichlorophenyl)-7-methyl-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-amine

To a solution of 7-methyl-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (340 mg, 1.0 mmol) in 2-methyltetrahydrofuran (10 mL) was added *tert*-butylhypochlorite (120 mg, 1.1 mmol). The reaction mixture was stirred at rt for 5 min. Then 3,4-dichloroaniline (194 mg, 1.2 mmol) was added into the mixture. After stirring for another 30 min, the reaction mixture was diluted with EtOAc (20 mL), washed with aqueous saturated NaHCO₃ solution (30 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Silica gel (1.2 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 2:1 to PE/CH₂Cl₂ = 1:2) to provide the desired product (420 mg, 84%) as a white solid.

Physical State: white solid.

Melting Point: 215.6-216.3 °C.

TLC: $R_f = 0.43$ (PE/EtOAc = 4:1).

¹**H NMR (400 MHz, DMSO-***d*₆) δ 11.03 (s, 1H), 7.74 (d, *J* = 7.7 Hz, 2H), 7.43 (d, *J* = 7.7 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.31 (d, *J* = 8.7 Hz, 1H), 7.10 (s, 1H), 6.98 (s, 1H), 6.83 (d, *J* = 8.1 Hz, 1H), 6.75 (d, *J* = 8.6 Hz, 1H), 6.52 (d, *J* = 8.5 Hz, 1H), 4.89 (d, *J* = 7.9 Hz, 1H), 4.44 (d, *J* = 13.9 Hz, 1H), 3.99 (d, *J* = 13.9 Hz, 1H), 3.47 (d, *J* = 12.1 Hz, 1H), 3.15 (d, *J* = 11.7 Hz, 1H), 2.39 (s, 3H), 2.36 (s, 3H).

¹³C NMR (101 MHz, DMSO-d₆) δ 147.81, 144.09, 137.18, 133.62, 131.89, 131.32, 131.28, 131.09, 130.35, 127.96, 122.67, 121.07, 118.10, 117.38, 113.85, 113.32, 111.79, 106.52, 48.24, 46.07, 43.47, 21.93, 21.48.

HRMS (ESI): calcd for C₂₅H₂₃Cl₂N₃O₂S [M - H]⁻*m*/*z* 498.0815, found 498.0813.

7-chloro-N-(3,4-dichlorophenyl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4amine

To a solution of 7-chloro-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (360 mg, 1.0 mmol) in 2-methyltetrahydrofuran (10 mL) was added *tert*-butylhypochlorite (120 mg, 1.1 mmol). The reaction mixture was stirred at rt for 10 min. Then 3,4-dichloroaniline (194 mg, 1.2 mmol) was added into the mixture. After stirring for another 30 min, the reaction mixture was diluted with EtOAc (20 mL), washed with aqueous saturated NaHCO₃ solution (30 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Silica gel (1.4 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 1:1 to PE/CH₂Cl₂ = 1:2) to provide the desired product (330 mg, 63%) as a light yellow solid.

Physical State: light yellow solid.

Melting Point: 210.6-211.3 °C.

TLC: $R_f = 0.43$ (PE/EtOAc = 4:1).

¹H NMR (400 MHz, DMSO-*d*₆) δ 11.38 (s, 1H), 7.75 (d, *J* = 7.5 Hz, 2H), 7.53 (d, *J* = 8.3 Hz, 1H), 7.43 (d, *J* = 7.4 Hz, 2H), 7.36 (s, 1H), 7.32 (d, *J* = 8.7 Hz, 1H), 7.04 – 6.97 (m, 2H), 6.75 (d, *J* = 8.8 Hz, 1H), 6.55 (d, *J* = 8.5 Hz, 1H), 4.93 (d, *J* = 6.3 Hz, 1H), 4.46 (d, *J* = 14.1 Hz, 1H), 4.05 (d, *J* = 14.1 Hz, 1H), 3.47 (s, 1H), 3.21 (d, *J* = 11.5 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 147.74, 144.15, 137.13, 133.59, 133.37, 131.92, 131.13, 130.37, 127.96, 126.89, 123.56, 119.93, 119.68, 117.56, 113.87, 113.39, 111.53, 107.08, 48.18, 46.03, 43.28, 21.48.

HRMS (ESI): calcd for C₂₄H₂₀Cl₃N₃O₂S [M - H]⁻*m*/*z* 518.0269, found 518.0268.

N-(tert-butyl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (326 mg, 1.0 mmol) in 2-methyltetrahydrofuran (10 mL) was added tert-butylhypochlorite (120 mg, 1.1 mmol). The reaction mixture was stirred at rt for 2 min. Then 2-methylpropan-2-amine (202 mg, 2.0 mmol) was added into the mixture. After stirring for another 1 h, the reaction mixture was concentrated under reduced pressure. Silica gel (1.4 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (CH₂Cl₂/EtOAc = 10:1) to provide the desired product (323 mg, 76%) as yellow oil.

Physical State: yellow oil.

TLC: $R_f = 0.60 (CH_2Cl_2/EtOAc = 10:1)$

¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 7.6 Hz, 2H), 7.37 (d, J = 7.8 Hz, 1H), 7.32 (t, 3H), 7.14 (t, J = 7.4 Hz, 1H), 7.07 (t, J = 7.3 Hz, 1H), 4.51 (d, J = 13.7 Hz, 1H), 4.20 (d, J = 13.8 Hz, 1H), 4.12 (s, 1H), 3.93 – 3.85 (m, 1H), 2.96 – 2.86 (m, 1H), 2.42 (s, 3H), 1.24 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 143.65, 135.98, 135.03, 134.45, 129.76, 127.55, 125.38, 122.13, 119.69, 117.90, 111.20, 106.47, 51.48, 46.59, 43.07, 30.37, 29.71, 21.51. HRMS (ESI): calcd for C₂₂H₂₇N₃O₂S [M + H]⁺m/z 398.1897, found 398.1895.

N-benzyl-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (326 mg, 1.0 mmol) in 2-methyltetrahydrofuran (10 mL) was added *tert*-butylhypochlorite (120 mg, 1.1 mmol). The reaction mixture was stirred at rt for 2 min. Then benzylamine (214 mg, 2.0 mmol) was added into the mixture. After stirring for another 1h, the reaction mixture was concentrated under reduced pressure. Silica gel (1.5 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/ EtOAc = 2:1) to provide the desired product (213 mg, 50%) as a white solid.

Physical State: white solid.

Melting Point: 177.4-178.6 °C

TLC: $R_f = 0.62$ (CH₂Cl₂/EtOAc = 10:1)

¹**H NMR (400 MHz, CDCl₃)** δ 8.27 (s, 1H), 7.78 (d, *J* = 7.7 Hz, 2H), 7.42 – 7.32 (m, 7H), 7.29 (d, *J* = 8.6 Hz, 2H), 7.16 (t, *J* = 7.5 Hz, 1H), 7.08 (t, *J* = 7.3 Hz, 1H), 4.50 (d, *J* = 13.7 Hz, 1H), 4.19 (d, *J* = 13.6 Hz, 1H), 4.04 (t, 2H), 3.88 (d, *J* = 12.9 Hz, 1H), 3.68 – 3.62 (m, 1H), 3.39 (d, *J* = 11.7 Hz, 1H), 2.43 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.76, 139.80, 136.03, 133.96, 133.33, 129.84, 128.61, 128.27, 127.59, 127.28, 124.91, 122.40, 119.73, 118.02, 111.27, 107.03, 50.58, 50.55, 47.69, 43.34, 21.56.

HRMS (ESI): calcd for $C_{25}H_{25}N_3O_2S [M + H]^+m/z 432.1740$, found 432.1739.

N-methyl-N-phenyl-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (326 mg, 1.0 mmol) in 2-methyltetrahydrofuran (10 mL) was added *tert*-butylhypochlorite (120 mg, 1.1 mmol). The reaction mixture was stirred at rt for 2 min. Then N-methylaniline (210 mg, 2 mmol) was added into the mixture. After stirring for another 1 h, the reaction mixture was concentrated under reduced pressure. Silica gel (1.4 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 1:2) to provide the desired product (234 mg, 54%) as a white solid.

Physical State: white solid.

Melting Point: 110.4-112.3 °C

TLC: $R_f = 0.56$ (PE/CH₂Cl₂ = 1:2).

¹**H NMR (400 MHz, CDCl₃)** δ 8.21 (s, 1H), 7.73 (d, *J* = 7.3 Hz, 2H), 7.47 (d, *J* = 7.2 Hz, 1H), 7.32 (t, *J* = 6.6 Hz, 5H), 7.20 (t, *J* = 7.0 Hz, 1H), 7.14 (t, *J* = 6.6 Hz, 1H), 6.94 – 6.84 (m, 3H), 5.27 (s, 1H), 4.50 (d, *J* = 13.8 Hz, 1H), 4.34 (d, *J* = 13.7 Hz, 1H), 3.71 (d, *J* = 11.3 Hz, 1H), 3.28 (t, 1H), 2.70 (s, 3H), 2.44 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 149.06, 143.82, 136.26, 133.81, 131.18, 129.86, 129.62, 127.63, 125.10, 122.66, 119.95, 118.35, 118.13, 113.70, 111.34, 109.18, 52.64, 45.67, 43.16, 33.51, 21.57.

HRMS (ESI): calcd for $C_{25}H_{25}N_3O_2S [M + H]^+m/z 432.1740$, found 432.1739.

N,N-dibenzyl-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (326 mg, 1.0 mmol) in 2-methyltetrahydrofuran (10 mL) was added *tert*-butylhypochlorite (120 mg, 1.1 mmol). The reaction mixture was stirred at rt for 2 min. Then dibenzylamine (454 mg, 2.3 mmol) was added into the mixture. After stirring for another 1.5 h, the reaction mixture was concentrated under reduced pressure. Silica gel (1.4 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 1:2) to provide the desired product (382 mg, 78%) as a white solid.

Physical State: white solid.

Melting Point: 195.6-197.1 °C

TLC: $R_f = 0.68 (PE/CH_2Cl_2 = 1:2).$

¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.77 (d, *J* = 7.1 Hz, 2H), 7.42 (s, 1H), 7.36 (s, 6H), 7.32 (t, 5H), 7.28 (s, 1H), 7.17 (t, *J* = 7.3 Hz, 1H), 7.09 (t, *J* = 7.1 Hz, 1H), 4.50 (d, *J* = 13.7 Hz, 1H), 4.20 (t, 2H), 3.92 (d, *J* = 13.9 Hz, 2H), 3.85 – 3.78 (m, 1H), 3.65 (d, *J* = 13.9 Hz, 2H), 3.40 (d, *J* = 11.6 Hz, 1H), 2.43 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.67, 139.38, 136.11, 133.93, 132.21, 129.82, 128.64, 128.54, 127.64, 127.22, 125.18, 122.38, 119.76, 117.94, 111.19, 109.09, 53.99, 51.78, 43.17, 42.84, 21.57.

HRMS (ESI): calcd for $C_{32}H_{31}N_3O_2S [M + H]^+m/z 522.2210$, found 522.2210.

2-((2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-yl)amino)ethan-1-ol

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b] indole (163 mg, 0.5 mmol) in 2-methyltetrahydrofuran (10 mL) was added *tert*-butylhypochlorite (60 mg, 0.55 mmol). The reaction mixture was stirred at rt for 2 min. Then 2-aminoethan-1-ol (61 mg, 1.0 mmol) was added into the mixture. After stirring for another 1 h, the reaction mixture was concentrated under reduced pressure. Silica gel (0.8 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (CH₂Cl₂/CH₃OH = 20:1) to provide the desired product (88 mg, 46%) as a white solid.

Physical State: White solid

Melting Point: 147.9-149.5 °C.

TCL: $R_f = 0.58$ (CH₂Cl₂/CH₃OH = 10:1).

¹H NMR (400 MHz, CDCl₃) δ 8.98 – 8.88 (m, 1H), 7.76 (d, J = 7.6 Hz, 2H), 7.40 – 7.33 (m, 3H), 7.29 (d, J = 8.1 Hz, 1H), 7.14 (t, J = 7.2 Hz, 1H), 7.07 (t, J = 7.0 Hz, 1H), 4.55 (d, J = 13.5 Hz, 1H), 4.06 (d, J = 13.6 Hz, 1H), 3.98 (s, 1H), 3.70 (d, J = 13.3 Hz, 3H), 3.17 (d, J = 11.8 Hz, 1H), 3.09 – 3.03 (m, 1H), 2.86 – 2.80 (m, 1H), 2.43 (s, 3H).

¹³C NMR (101 MHz, CDCl₃/CD₃OD = 20:1) δ 143.98, 136.20, 133.37, 132.44, 129.87, 127.53, 124.58, 122.26, 119.41, 117.86, 111.41, 106.62, 61.30, 50.73, 47.91, 47.77, 43.44, 21.45.

HRMS (ESI): calcd for $C_{20}H_{23}N_3O_3S [M + H]^+m/z 386.1533$, found 386.1531.

4-(piperidin-1-yl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (326 mg, 1.0 mmol) in 2-methyltetrahydrofuran (10 mL) was added tert-butylhypochlorite (120 mg, 1.1 mmol). The reaction mixture was stirred at rt for 2 min. Then piperidine (170 mg, 2.0 mmol) was added into the mixture. After stirring for another 1 h, the reaction mixture was concentrated under reduced pressure. Silica gel (1.3 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (CH₂Cl₂/EtOAc = 5:1) to provide the desired product (243 mg, 59%) as a yellow solid.

Physical State: yellow solid.

Melting Point: 74.6-75.8 °C

TLC: $R_f = 0.25$ (CH₂Cl₂/EtOAc = 10:1)

¹**H NMR (400 MHz, CDCl**₃) δ 8.63 (s, 1H), 7.77 (d, *J* = 7.6 Hz, 2H), 7.41 (d, *J* = 7.8 Hz, 1H), 7.37 – 7.32 (m, 3H), 7.17 (t, *J* = 7.5 Hz, 1H), 7.09 (t, *J* = 7.3 Hz, 1H), 4.33 – 4.24 (m, 2H), 4.10 (s, 1H), 3.58 – 3.52 (m, 1H), 3.44 – 3.38 (m, 1H), 2.63 (s, 4H), 2.43 (s, 3H), 1.62 – 1.51 (m, 4H), 1.50 – 1.45 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 143.71, 136.07, 133.54, 131.81, 129.81, 127.67, 125.11, 122.23, 119.60, 117.93, 111.26, 108.30, 58.17, 50.07, 43.19, 42.40, 26.48, 24.41, 21.55. HRMS (ESI): calcd for C₂₃H₂₇N₃O₂S [M + H]⁺m/z 410.1897, found 410.1894.

4-(1H-indol-3-yl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (163 mg, 0.5 mmol) in 2-methyltetrahydrofuran (5 mL) was added *tert*-butyl hypochlorite (60 mg, 0.55 mmol). The reaction mixture was stirred at rt for 2 min. Then *indole* (88 mg, 0.75 mmol) was added into the mixture. After stirring for another 5 min, the reaction mixture was diluted with EtOAc (20 mL) and then was washed with aqueous saturated NaHCO₃ solution (30 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and then concentrated to dryness under vacuum. The residue was purified by silica gel column chromatography (PE/EtOAc = 3:1) to give the desired product (157 mg, 71%) as a white solid.

Procedure for gram-scale of 40

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (1.632 mg, 5 mmol) in 2-methyltetrahydrofuran (30 mL) was added tert-butyl hypochlorite (597 mg, 5.5 mmol). The reaction mixture was stirred at rt for 2 min. Then indole (878 mg, 7.5 mmol) was added into the mixture. After stirring for another 10 min, the reaction mixture was diluted with EtOAc (80 mL) and then was washed with aqueous saturated NaHCO₃ solution (80 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and then concentrated to dryness under vacuum. The residue was purified by silica gel column chromatography (PE/EtOAc = 3:1) to give the desired product (1.652 mg, 75%) as a white solid.

Physical State: white solid.

Melting Point: 84.2-84.6 °C.

TLC: R_f = 0.45 (PE/EtOAc = 2:1).

¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 7.76 – 7.67 (m, 3H), 7.47 (s, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.28 (s, 1H), 7.17 (t, J = 7.5 Hz, 1H), 7.13 – 7.05 (m, 4H), 6.96 (d, J = 10.8 Hz, 2H), 4.87 (d, J = 13.6 Hz, 1H), 4.62 (s, 1H), 4.19 (d, J = 13.7 Hz, 1H), 4.16 – 4.10 (m, 1H), 3.10 (t, J = 10.6 Hz, 1H), 2.40 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.48, 136.25, 135.68, 134.08, 133.78, 129.62, 127.34, 125.94, 125.18, 123.31, 122.27, 121.68, 119.74, 119.54, 118.68, 117.54, 112.74, 111.46, 110.98, 105.89, 50.14, 43.21, 33.05, 21.34.

HRMS (ESI): calcd for $C_{26}H_{23}N_3O_2S [M + H]^+ m/z 442.1584$, found 442.1587.

4-(1-methyl-1H-indol-3-yl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (163 mg, 0.5 mmol) in 2-methyltetrahydrofuran (5 mL) was added *tert*-butyl hypochlorite (60 mg, 0.55 mmol). The reaction mixture was stirred at rt for 2 min. Then 1-methyl-1H-indole (88 mg, 0.75 mmol) was added into the mixture. After stirring for another 5 min, the reaction mixture was diluted with EtOAc (20 mL) and then was washed with aqueous saturated NaHCO₃ solution (30 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and then concentrated to dryness under vacuum. The residue was purified by silica gel column chromatography (PE/EtOAc = 3:1) to give the desired product (178 mg, 78%) as a yellow solid.

Physical State: yellow solid.

Melting Point: 124.0-124.6 °C.

TLC: $R_f = 0.35$ (PE/EtOAc = 4:1).

¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.75 (d, *J* = 7.5 Hz, 2H), 7.52 (s, 1H), 7.37 (d, *J* = 8.1 Hz, 1H), 7.31 (d, *J* = 9.5 Hz, 2H), 7.25 (d, *J* = 7.6 Hz, 1H), 7.17 (s, 4H), 7.04 – 6.98 (m, 1H), 6.95 (s, 1H), 4.91 (d, *J* = 13.6 Hz, 1H), 4.69 (s, 1H), 4.24 (d, *J* = 13.7 Hz, 1H), 4.21 – 4.15 (m, 1H), 3.78 (s, 3H), 3.15 (t, *J* = 10.5 Hz, 1H), 2.44 (s, 3H).

 13 C NMR (101 MHz, CDCl₃) δ 143.31, 136.98, 135.65, 134.19, 133.93, 129.52, 127.77, 127.33, 126.44, 125.22, 121.84, 121.64, 119.50, 119.28, 118.81, 117.54, 111.29, 110.90, 109.40, 105.92, 50.24, 43.16, 32.92, 32.58, 21.32.

HRMS (ESI): calcd for $C_{27}H_{25}N_3O_2S [M + H]^+ m/z 456.1740$, found 456.1743.

8-bromo-4-(5-methyl-1H-indol-3-yl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3b]indole

To a solution of 8-bromo-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (405 mg, 1.0 mmol) in 2-methyltetrahydrofuran (10 mL) was added *tert*-butylhypochlorite (120 mg, 1.1 mmol). The reaction mixture was stirred at rt for 5 min. Then 5-methyl-1H-indole (196 mg, 1.5 mmol) was added into the mixture. After stirring for another 1.5 h, the reaction mixture was diluted with EtOAc (20 mL), washed with aqueous saturated NaHCO₃ solution (30 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Silica gel (1.2 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/EA = 2:1) to provide the desired product (352 mg, 66%) as a white solid.

Physical State: white solid.

Melting Point: 153.0-153.9 °C.

TLC: $R_f = 0.26$ (PE/EA = 3:1).

¹**H NMR (400 MHz, CDCl₃)** δ 8.12 (s, 1H), 7.80 (s, 1H), 7.71 (d, *J* = 7.4 Hz, 2H), 7.59 (s, 1H), 7.29 (d, *J* = 7.7 Hz, 3H), 7.20 (d, *J* = 8.4 Hz, 1H), 7.03 (d, *J* = 6.0 Hz, 3H), 6.94 (s, 1H), 4.80 (d, *J* = 13.7 Hz, 1H), 4.64 (s, 1H), 4.13 (t, *J* = 12.6 Hz, 2H), 3.09 (t, *J* = 10.2 Hz, 1H), 2.41 (s, 3H), 2.32 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.70, 135.91, 134.74, 134.44, 134.01, 129.81, 129.44, 127.55, 127.11, 126.36, 124.63, 124.29, 123.46, 120.41, 118.20, 112.88, 112.53, 112.15, 111.33, 105.78, 50.13, 43.09, 33.20, 21.54, 21.47.

HRMS (ESI): calcd for $C_{27}H_{24}BrN_3O_2S [M + H]^+m/z 534.0845$, found 534.0844.

8-fluoro-4-(5-methyl-1H-indol-3-yl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3b]indole

To a solution of *8-fluoro-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido*[4,3-b]indole (344 mg, 1.0 mmol) in 2-methyltetrahydrofuran (10 mL) was added *tert*-butylhypochlorite (120 mg, 1.1 mmol). The reaction mixture was stirred at rt for 15 min. Then 5-methyl-1H-indole (196 mg, 1.5 mmol) was added into the mixture. After stirring for another 1.5 h, the reaction mixture was diluted with EtOAc (20 mL), washed with aqueous saturated NaHCO₃ solution (30 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Silica gel (1.1 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/EA = 4:1 to PE/EA = 2:1) to provide the desired product (381 mg, 80%) as a white solid.

Physical State: white solid.

Melting Point: 154.9-155.2 °C.

TLC: $R_f = 0.24$ (PE/EA = 3:1).

¹**H NMR (400 MHz, CDCl₃)** δ 8.19 (s, 1H), 7.77 (s, 1H), 7.69 (d, *J* = 7.6 Hz, 2H), 7.28 (s, 2H), 7.09 (d, *J* = 9.3 Hz, 1H), 7.02 (d, *J* = 7.7 Hz, 2H), 6.95 (s, 2H), 6.84 (t, *J* = 8.8 Hz, 1H), 4.78 (d, *J* = 13.6 Hz, 1H), 4.59 (s, 1H), 4.12 (d, *J* = 13.2 Hz, 2H), 3.07 (t, *J* = 10.6 Hz, 1H), 2.41 (s, 3H), 2.32 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 157.83 (d, J = 234.9 Hz), 143.70, 136.39, 134.73, 133.98, 132.29, 129.81, 129.38, 127.55, 126.42, 125.68 (d, J = 10.0 Hz), 124.24, 123.44, 118.21, 112.25, 111.68 (d, J = 9.6 Hz), 111.34, 109.92 (d, J = 26.1 Hz), 106.23 (d, J = 4.6 Hz), 102.91 (d, J = 23.8 Hz), 50.21, 43.19, 33.24, 21.53, 21.47.

HRMS (ESI): calcd for $C_{27}H_{24}FN_3O_2S$ [M + H]⁺m/z 474.1646, found 474.1645.

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (163 mg, 0.5 mmol) in 2-methyltetrahydrofuran (5 mL) was added tert-butyl_-hypochlorite (60 mg, 0.55 mmol). The reaction mixture was stirred at rt for 2 min. Then 6-bromo-1H-indole (147 mg, 0.75 mmol) was added into the mixture. After stirring for another 4 h, the reaction mixture was diluted with EtOAc (20 mL), washed with aqueous saturated NaHCO₃ solution (30 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by chromatography on silica gel (PE/-EtOAc = 3:1) to provide the desired product (170 mg, 65%) as a light pink solid.

Physical State: light pink solid.

Melting Point: >230°C.

TLC: $R_f = 0.42$ (PE/EtOAc = 2:1).

¹**H NMR (400 MHz, DMSO-***d*₆**)** δ 11.19 (s, 1H), 10.74 (s, 1H), 7.71 (s, 1H), 7.69 (s, 1H), 7.57 (s, 1H), 7.49 (d, *J* = 7.6 Hz, 1H), 7.44 – 7.40 (m, 1H), 7.39 (s, 1H), 7.27 – 7.15 (m, 2H), 7.06 (d, *J* = 8.6 Hz, 1H), 7.03 (s, 1H), 7.00 (s, 1H), 6.98 (d, *J* = 7.0 Hz, 1H), 4.72 – 4.58 (m, 1H), 4.49 (d, *J* = 13.7 Hz, 1H), 4.25 (d, *J* = 13.7 Hz, 1H), 3.82 – 3.67 (m, 1H), 3.22 – 3.14 (m, 1H), 2.38 (s, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 143.95, 137.78, 136.60, 134.71, 133.75, 130.30, 127.84, 125.91, 125.53, 125.15, 121.96, 121.43, 120.64, 119.11, 117.98, 114.65, 114.28, 113.68, 111.76, 104.97, 50.86, 43.66, 32.77, 21.48.

HRMS (ESI): calcd for $C_{26}H_{22}BrN_3O_2S [M + H]^+m/z 518.0543.$, found 518.0543.

4-(6-methyl-1H-indol-3-yl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (163 mg, 0.5 mmol) in 2-methyltetrahydrofuran (5 mL) was added *tert*-butyl hypochlorite (60 mg, 0.55 mmol). The reaction mixture was stirred at rt for 2 min. Then 6-methyl-1H-indole (98 mg, 0.75 mmol) was added into the mixture. After stirring for another 1.5 h, the reaction mixture was diluted with EtOAc (20 mL) and then was washed with aqueous saturated NaHCO₃ solution (30 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and then concentrated to dryness under vacuum. The residue was purified by silica gel column chromatography (PE/EtOAc = 3.5:1) to give the desired product (175 mg, 77%) as a white solid.

Physical State: white solid.

Melting Point: 124.3–124.6°C.

TLC: $R_f = 0.20$ (PE/EtOAc = 4:1).

¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 7.94 – 7.68 (m, 3H), 7.56 (s, 1H), 7.36 (d, *J* = 6.3 Hz, 3H), 7.21 (s, 3H), 7.06 (s, 2H), 6.88 (d, *J* = 7.7 Hz, 1H), 4.98 (d, *J* = 13.6 Hz, 1H), 4.71 (s, 1H), 4.26 (d, *J* = 12.6 Hz, 2H), 3.26 – 3.09 (m, 1H), 2.50 (d, *J* = 4.5 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 143.44, 136.75, 135.67, 134.18, 133.83, 132.21, 129.59, 127.35, 125.21, 123.78, 122.62, 121.64, 121.51, 119.51, 118.38, 117.52, 112.55, 111.33, 110.96, 105.85, 50.13, 43.21, 33.15, 21.43, 21.33.

HRMS (ESI): calcd for $C_{27}H_{25}N_3O_2S [M + H]^+ m/z 456.1740$, found 456.1743.

4-(7-methyl-1H-indol-3-yl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (163 mg, 0.5 mmol) in 2-methyltetrahydrofuran (5 mL) was added *tert*-butyl hypochlorite (60 mg, 0.55 mmol). The reaction mixture was stirred at rt for 2 min. Then 7-methyl-1H-indole (98 mg, 0.75 mmol) was added into the mixture. After stirring for another 4 h, the reaction mixture was diluted with EtOAc (20 mL), washed with aqueous saturated NaHCO₃ solution (30 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by chromatography on silica gel (PE/EtOAc = 3:1) to provide the desired product (182 mg, 80%) as a light yellow solid.

Physical State: light yellow solid.

Melting Point: 96.1–96.3 °C.

TLC: $R_f = 0.20$ (PE/EtOAc = 4:1).

¹**H NMR (400 MHz, CDCl₃)** δ 8.13 (s, 1H), 7.71 (d, *J* = 7.4 Hz, 3H), 7.52 – 7.43 (m, 1H), 7.27 (d, *J* = 7.9 Hz, 2H), 7.11 (d, *J* = 11.2 Hz, 4H), 7.04 – 6.93 (m, 2H), 6.90 (d, *J* = 7.2 Hz, 1H), 4.88 (d, *J* = 13.7 Hz, 1H), 4.74 – 4.57 (m, 1H), 4.25 – 4.09 (m, 2H), 3.11 (s, 1H), 2.49 (s, 3H), 2.40 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.44, 135.76(t, *J* = 14.1 Hz), 134.21(d, *J* = 13.4 Hz), 133.62, 129.51, 127.23, 125.46 (d, *J* = 2.9 Hz), 125.07(d, *J* = 4.1 Hz), 123.24, 123.08, 122.39, 121.42, 120.78(d, *J* = 3.9 Hz), 119.61, 119.25, 117.36, 116.17, 112.82(d, *J* = 6.4 Hz), 110.88(d, *J* = 4.8 Hz), 105.50(d, *J* = 5.0 Hz), 50.13, 43.15, 33.08, 21.18, 16.24. HRMS (ESI): calcd for C₂₇H₂₅N₃O₂S [M + H]⁺ *m/z* 456.1740, found 456.1743.

N,N-dimethyl-4-(2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-yl)aniline

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (163 mg, 0.5 mmol) in CH₂Cl₂ (5 mL) was added *tert*-butyl hypochlorite (60 mg, 0.55 mmol) and TMEDA (58 mg, 0.5 mmol) was added after 0.5 min. The reaction mixture was stirred at rt for 2 min. Then *N*,*N*-dimethylaniline (121 mg, 1.0 mmol) was added into the mixture. After stirring for another 6 h, AlCl₃ (133 mg, 1.0 mmol) were added and the reaction mixture was diluted with CH₂Cl₂ (20 mL) then was washed with H₂O (30 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by chromatography on silica gel (PE/EtOAc = 10:3) to provide the desired product (152 mg, 68%) as a white solid.

Physical State: white solid.

Melting Point: 114.7–116.1 °C.

TLC: $R_f = 0.21$ (PE/EtOAc = 4:1).

¹**H NMR (400 MHz, CDCl**₃) δ 7.73 (d, *J* = 7.7 Hz, 2H), 7.69 (s, 1H), 7.46 (d, *J* = 7.3 Hz, 1H), 7.31 (d, *J* = 7.8 Hz, 2H), 7.17 (d, *J* = 7.7 Hz, 1H), 7.15 – 7.09 (m, 2H), 7.01 (d, *J* = 8.0 Hz, 2H), 6.68 (d, *J* = 8.1 Hz, 2H), 4.82 (d, *J* = 13.5 Hz, 1H), 4.28 (t, 1H), 4.14 (d, *J* = 13.9 Hz, 1H), 4.12 – 4.06 (m, 1H), 2.95 (d, *J* = 1.4 Hz, 6H), 2.86 (t, 1H), 2.43 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 150.19, 143.57, 136.00, 134.45, 133.89, 129.76, 129.37, 127.66, 126.39, 125.33, 121.96, 119.71, 117.76, 112.78, 111.05, 106.97, 51.85, 43.37, 40.75, 40.60, 21.59.

HRMS (ESI): calcd for $C_{26}H_{27}N_3O_2S [M + H]^+ m/z 446.1897$, found 446.1895.

5-(1-methyl-1H-indol-3-yl)-2-tosyl-1,2,3,4,5,6-hexahydroazepino[4,3-b]indole

To a solution of 2-tosyl-1,2,3,4,5,6-hexahydroazepino[4,3-b]indole (170 mg, 0.5 mmol) in CH₂Cl₂ (5 mL) was added *tert*-butyl hypochlorite (60 mg, 0.55 mmol) and TMEDA (58 mg, 0.5 mmol) was added after 0.5 min. The reaction mixture was stirred at rt for 1 min. Then 1-methyl-1H-indole (121 mg, 1.0 mmol) was added into the mixture. After stirring for another 12 h, AlCl₃ (133 mg, 1.0 mmol) were added and the reaction mixture was diluted with CH₂Cl₂ (20 mL) then was washed with H₂O (30 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by chromatography on silica gel (PE/EtOAc = 4:1) to provide the desired product (218 mg, 93%) as a white solid.

Physical State: white solid.

Melting Point: 119.6-121.3 °C.

TLC: $R_f = 0.28$ (PE/EtOAc = 4:1).

¹**H NMR (400 MHz, CDCl₃)** δ 7.76 (s, 1H), 7.69 (d, *J* = 7.9 Hz, 2H), 7.56 (d, *J* = 6.4 Hz, 1H), 7.41 (d, *J* = 8.2 Hz, 1H), 7.37 (d, *J* = 7.7 Hz, 1H), 7.31 (d, *J* = 7.4 Hz, 1H), 7.28 (s, 2H), 7.11 (d, *J* = 8.8 Hz, 3H), 7.05 (d, *J* = 5.7 Hz, 2H), 4.85 (d, *J* = 10.0 Hz, 1H), 4.25 (d, *J* = 12.8 Hz, 1H), 4.14 (d, *J* = 13.4 Hz, 1H), 3.83 (s, 3H), 3.47 (t, *J* = 12.2 Hz, 1H), 3.25 (d, *J* = 11.2 Hz, 2H), 3.21 (s, 1H), 2.42 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.18, 137.35, 137.07, 136.72, 134.29, 129.79, 129.01, 128.04, 126.90, 126.61, 122.21, 121.36, 119.80, 119.59, 119.25, 117.82, 111.88, 110.65, 110.57, 109.74, 54.37, 50.34, 40.00, 32.93, 26.49, 21.56.

HRMS (ESI): calcd for $C_{28}H_{27}N_3O_2S [M + H]^+ m/z 470.1897$, found 470.1895.

N-phenyl-2-tosyl-1,2,3,4,5,6-hexahydroazepino[4,3-b]indol-5-amine

To a solution of 2-tosyl-1,2,3,4,5,6-hexahydroazepino[4,3-b]indole (170 mg, 0.5 mmol) in CH₂Cl₂ (5 mL) was added tert-butyl hypochlorite (60 mg, 0.55 mmol) and TMEDA (58 mg, 0.5 mmol) was added after 0.5 min. The reaction mixture was stirred at rt for 1 min. Then aniline (70 mg, 0.75 mmol) was added into the mixture. After stirring for another 6 h, AlCl₃ (133 mg, 1.0 mmol) were added and the reaction mixture was diluted with CH₂Cl₂ (20 mL) then was washed with H₂O (30 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by chromatography on silica gel (PE/EtOAc = 4:1) to provide the desired product (174 mg, 80%) as a light yellow solid.

Physical State: light yellow solid

Melting Point: 133.4-134.5 °C.

TLC: $R_f = 0.41$ (PE/EtOAc = 4:1).

¹**H NMR (400 MHz, DMSO-***d*₆**)** δ 10.89 (s, 1H), 7.68 (d, *J* = 7.4 Hz, 2H), 7.45 (d, *J* = 7.7 Hz, 1H), 7.39 (d, *J* = 7.6 Hz, 2H), 7.33 (d, *J* = 7.9 Hz, 1H), 7.15 (t, *J* = 7.3 Hz, 2H), 7.04 (t, *J* = 7.4 Hz, 1H), 6.97 (t, *J* = 7.3 Hz, 1H), 6.78 (d, *J* = 7.8 Hz, 2H), 6.63 (t, *J* = 7.2 Hz, 1H), 5.97 (s, 1H), 4.93 (s, 1H), 3.71 – 3.60 (m, 2H), 3.44 (d, 2H), 3.15 – 3.07 (m, 1H), 2.99 (d, J = 16.7 Hz, 1H), 2.37 (s, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 147.68, 143.64, 136.70, 136.24, 135.21, 130.39, 129.50, 128.50, 127.14, 121.33, 118.83, 118.15, 117.03, 113.35, 111.61, 109.17, 52.61, 50.59, 49.82, 24.95, 21.44.

HRMS (ESI): calcd for $C_{25}H_{25}N_3O_2S [M + H]^+ m/z 432.1740$, found 432.1739.

N-(4-(5-(2,4-dichlorophenyl)-3-isobutoxy-1H-1,2,4-triazol-1-yl)phenyl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-4-amine

To a solution of 2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (163 mg, 0.5 mmol) in 2-methyltetrahydrofuran (10 mL) was added *tert*-butylhypochlorite (60 mg, 0.55 mmol). The reaction mixture was stirred at rt for 2 min. Then 4-(5-(2,4-dichlorophenyl)-3-isobutoxy-1H-1,2,4-triazol-1-yl) aniline (94 mg, 0.25 mmol) was added into the mixture. After stirring for 3 h, the reaction mixture was concentrated under reduced pressure. Silica gel (0.6 g) was added to the mixture and then the solvent was removed *in vacuo*. The crude product was purified by chromatography on silica gel (PE/EtOAc = 3:1) to provide the desired product (88 mg, 51%) as brown oil. **Physical State:** brown oil.

TLC: R_f = 0.60 (PE/EtOAc = 1:1)

¹**H NMR (400 MHz, CDCl₃)** δ 8.20 (s, 1H), 7.74 (d, *J* = 8.6 Hz, 2H), 7.45 (d, *J* = 7.8 Hz, 1H), 7.39 (d, *J* = 8.4 Hz, 1H), 7.33 (t, 3H), 7.27 – 7.26 (m, 1H), 7.24 – 7.16 (m, 3H), 7.13 (t, *J* = 7.4 Hz, 1H), 6.74 (d, *J* = 8.3 Hz, 2H), 4.89 (s, 1H), 4.59 (d, *J* = 13.9 Hz, 1H), 4.22 (d, *J* = 14.0 Hz, 1H), 4.12 (d, *J* = 6.5 Hz, 2H), 3.70 – 3.60 (m, 1H), 3.48 – 3.38 (m, 1H), 2.43 (s, 3H), 2.19 – 2.12 (m, 1H), 1.06 (d, *J* = 6.6 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 167.88, 150.63, 146.97, 143.97, 136.18, 134.22, 133.83, 132.90, 131.17, 130.62, 130.51, 129.91, 128.56, 127.61, 127.54, 127.40, 124.63, 123.03, 120.12, 118.24, 114.10, 111.46, 108.23, 76.01, 48.18, 46.97, 43.22, 28.21, 21.56, 19.10.

HRMS (ESI): calcd for $C_{36}H_{34}Cl_2N_6O_3S [M + H]^+ m/z$ 701.1863, found 701.1862.

4-(1H-indol-3-yl)-5H-pyrido[4,3-b]indole

To a solution of 4-(1H-indol-3-yl)-2-tosyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole (441 mg, 1.0 mmol) in DMSO (8 mL) was added Me₄NCl (11 mg, 0.1 mmol) and K₂S₂O₈ (540 mg, 2.0 mmol). The reaction mixture was stirred at 90 °C for 0.5 h. Then the reaction mixture was basified to pH 8–9 using saturated NaHCO₃ and extracted with DCM/MeOH = 10:1 (40 mL). The combined organic layers were washed with saturated brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to afford the crude product, which was purified by silica gel chromatography (DCM/MeOH = 50:1 to DCM/MeOH = 20:1) to give the desired product (190 mg, 67%) as a pink solid.

Physical State: pink solid.

Melting Point: >230°C.

TLC: $R_f = 0.42$ (DCM/MeOH = 10:1).

¹**H NMR (400 MHz, DMSO-** d_6 **)** δ 11.66 (s, 1H), 11.53 (s, 1H), 9.32 (s, 1H), 8.63 (s, 1H), 8.29 (d, J = 7.7 Hz, 1H), 7.88 (s, 1H), 7.68 (d, J = 7.9 Hz, 1H), 7.62 (d, J = 8.1 Hz, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.31 (t, J = 7.5 Hz, 1H), 7.24 (t, J = 7.6 Hz, 1H), 7.14 (t, J = 7.4 Hz, 1H).

¹³C NMR (101 MHz, DMSO-d₆) δ 143.73, 142.14, 140.65, 140.57, 137.08, 126.94, 126.28, 125.44, 122.26, 121.54, 121.02, 120.53, 120.20, 119.53, 112.51, 112.48, 109.60.

HRMS (ESI): calcd for $C_{19}H_{13}N_3 [M + H]^+ m/z$ 284.1182, found 284.1172.

3. NMR Spectrum

¹H NMR Spectrum of 1

4. X-ray Crystal Structure Data

X-ray Crystal Structure Data for compound 25

	=
ĊI	

Identification code	25	
Bond precision	C-C = 0.0088 Å Wavelength=0.71073	
Cell	a=11.0746(18) b=11.3733(17) c=17.772(2)	
	alpha=90 beta=103.848(5) gamma=90	
Temperature	173 К	
	Calculated	Reported
Volume	2173.4(5)	2173.4(6)
Space group	P 21/c	P 21/c
Hall group	-P 2ybc	-P 2ybc
Moiety formula	C24 H21 Cl2 N3 O2 S	?
Sum formula	C24 H21 Cl2 N3 O2 S	C24 H21 Cl2 N3 O2 S
Mr	486.40	486.40
Dx, g cm-3	1.487	1.487
Z	4	4
Mu (mm-1)	0.423	0.423
F000	1008.0	1008.0
F000'	1010.02	/
h, k, lmax	13,13,21	13,13,21
Nref	3833	3832
Tmin, Tmax	0.911,0.932	/
Tmin'	0.911	/
Data Completeness	1.000	
Theta(max)	25.014	
R(reflections)	0.0873(2760)	
wR2(reflections)	0.1937(3832)	
S	1.075	
Npar	299	

X-ray Crystal Structure Data for compound 46

Identification code	46	
Bond precision	C-C = 0.0000 Å Wavelength=0.71073	
Cell	a=19.448(5) b=10.825(3) c=22.041(5)	
	alpha=90 beta=90 gamma=90	
Temperature	296 К	
	Calculated	Reported
Volume	4640(2)	4640(2)
Space group	P n a 21	P n a 21
Hall group	P 2c -2n	P 2c -2n
Moiety formula	C27 H24 N3 O2 S	?
Sum formula	C27 H24 N3 O2 S	C27 H24 N3 O2 S
Mr	454.55	454.55
Dx, g cm-3	1.301	1.301
Z	8	8
Mu (mm-1)	0.169	0.169
F000	1912.0	1912.0
F000'	1913.70	/
h, k, lmax	23,13,26	23,13,26
Nref	8586[4413]	8352
Tmin, Tmax	0.967,0.967	0.459,0.745
Tmin'	0.967	/
Data Completeness	1.89/0.97	
Theta(max)	25.445	
R(reflections)	0.0675(5755)	
wR2(reflections)	0.1882(8352)	
S	1.023	
Npar	1175	

 \equiv