Enhancing separation efficiency of photo-induced carriers in

Bi₂S₃/BiOCl heterostructure by the cooperative of oxygen vacancies

and interfacial electric field

Chengming Deng^a, Haiming Xu^{a*}, Hailan Qin^a, Dongsheng Xia^{ab*}, Dongya Li^b, Qilin Yu^c, Dahong Chen^d, Yi Zheng^e, Yujia Wang^a

^a School of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, PR China

^b Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430200, PR China

^c Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China

^d State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China

^e School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, PR China

E-mail: xulianhe@163.com; dongsheng_xia@wtu.edu.cn

Mott-Schottky (M-S) analysis:

The 0.2 M Na₂SO₄ solution was used as the electrolyte solution (pH=7). 10 mg of the catalyst was dispersed in 50 μ L solution (10:1 by volume of ethanol and Nafion PFSA Polymer), and then uniformly spread on indium-doped tin oxide (ITO) glass (10×20 mm) to dry naturally, and then a working electrode was obtained. Mott-Schottky (M-S) plots were generated under dark with a voltage of 10 mV at a frequency of 1 kHz. In the M-S plot, the flat band potential and the carrier densities of the photoelectrode are measured according to following equation:

$C^{-2} = (2/\varepsilon \varepsilon_0 q N_q) \left(E - E_{FB} - kT/q \right)$	Equation S1
---	-------------

 $slope = 2/q \epsilon_0 A^2 N_q$

Equation S2

Where, C is the space charge capacitance in the semiconductor (obtained from M-S curves), q is the electron charge, ε_0 is the vacuum permittivity (8.85×10⁻¹² F m⁻¹), ε represents the dielectric constant of semiconductor (for BiS/BOC heterojunctions, this value is a fixed value), N_q is the charge donor density (cm⁻³), E is the electrode potential, E_{FB} is fiat band potential, k represents Boltz-mann's constant (1.38×10⁻²³ J K⁻¹), T is the absolute temperature.

The slope (k) of the linear part of the differential capacitance potential curve at a given frequency was used to estimate their charge carrier density. From equations S1 and S2, it can be seen that for BiS/BOC heterojunction, other physical quantities in the equation are fixed values, and the charge donor density (N_q) of BiS/BOC heterojunction is negatively correlated with the obtained k value. That is, the smaller the k value, the larger the N_q , and the greater the photogenerated carrier density of the material; on the contrary, the larger the k value, the smaller the N_q , and the smaller the photogenerated carrier density of the material.

Fig. S2 The HRTEM image of BiS/BOC-4.

Fig. S3 The O₂-TPD profile of (a) BiOCl, (b) BiS/BOC-2, (c) BiS/BOC-4 and (d) BiS/BOC-6.

Fig. S4 Water contact angle of the as-prepared samples: (a) BiOCl, (b) Bi₂S₃, (c) BiS/BOC-2, (d) BiS/BOC-4, (e) BiS/BOC-6.

Fig. S5 (a) Nitrogen sorption isotherms curves and (b) pore volume distribution plots of the asprepared samples.

Fig. S6 (a-e) The slope (k) of the linear part of the differential capacitance potential curve at a given frequency (1000 KHz) for the prepared sample.

Fig. S7. Photocatalytic reaction conditions (a) dark reaction, (b) light reaction.

Fig. S8 Photocatalytic activity of BiS/BOC-4 for purify TC-HCl (20 mg/L) in different natural water matrices.