Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Exploring the reactivity of L-tellurocystine, Te-protected tellurocysteine conjugates and diorganodiselenides towards hydrogen peroxide: Synthesis and molecular structure analysis

Abhishek Tripathi,^{[a][b][c]} Rajesh Deka,^{[a][b][c]} Ray J. Butcher,^[d] David R. Turner,^{[b][c]} Glen B. Deacon,^{*[b][c]} and Harkesh B. Singh,^{*[a][b]}

- [a] Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- [b] IITB-Monash Research Academy, Powai, Mumbai 400076, India
- [c] School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
- [d] Department of Chemistry, Howard University, Washington, D. C. 20059, USA

Contents	Page No.
Spectral data	S2-S21
Mechanism for the synthesis of 9	S22
Crystallographic data and structure refinement details of 5,	S23
8, 9, 14, 15, 16, and 17	
Molecular structures of 15-17	S24
The important geometric parameters of 5, 8, and 9	S24-S26
Comparison of the geometrical parameters of 14-17	S26
Packing diagrams of compounds 5, 8, 9,14, 15, 16, and 17	S27-S31

Figure S1. HR-MS spectrum of compound 5

Figure S2. HR-MS spectrum of compound 5

Figure S3. FT-IR spectrum of compound 5

Figure S4. ¹H NMR spectrum of compound 5

Figure S5. ¹³C NMR spectrum of compound 5

Figure S6. ¹²⁵Te NMR spectrum of compound 5

Figure S7. HR-MS spectrum of compound 8

Figure S8. FT-IR spectrum of compound 8

Figure S9. ¹H NMR spectrum of compound 8

Figure S10. ¹³C NMR spectrum of compound 8

Figure S11. ¹²⁵Te NMR spectrum of compound 8

Figure S12. HR-MS spectrum of compound 9

Figure S13. FT-IR spectrum of compound 9

Figure S14. ¹H NMR spectrum of compound 9

Figure S15. ¹³C NMR spectrum of compound 9

Figure S16. ¹²⁵Te NMR spectrum of compound 9

Figure S17. ¹²⁵Te NMR spectrum of the reaction aliquot of 6 with H₂O₂/HBr.

Figure S18. ⁷⁷Se NMR spectrum of compound 12

Figure S19. HR-MS spectrum of compound 14

Figure S20. FT-IR spectrum of compound 14

Figure S21. ¹H NMR spectrum of compound 14

Figure S22. ¹³C NMR spectrum of compound 14

Figure S23. ⁷⁷Se NMR spectrum of compound 14

Figure S24. HR-MS spectrum of compound 15

Figure S25. FT-IR spectrum of compound 15

Figure S26. ¹H NMR spectrum of compound 15

Figure S27. ¹³C NMR spectrum of compound 15

Figure S28. ⁷⁷Se NMR spectrum of compound 15

Figure S29. HR-MS spectrum of compound 16

Figure S30. FT-IR spectrum of compound 16

Figure S31. ¹H NMR spectrum of compound 16

Figure S32. ¹³C NMR spectrum of compound 16

Figure S33. ⁷⁷Se NMR spectrum of compound 16

Figure S34. HR-MS spectrum of compound 17

Figure S35. FT-IR spectrum of compound 17

Figure S36. ¹H NMR spectrum of compound 17

Figure S37. ¹³C NMR spectrum of compound 17

Figure S38. ⁷⁷Se NMR spectrum of compound 17

Mechanism for the synthesis of 9

The mechanism for the formation of **9** involves the initial formation of dichlorotellurane species **9a**. Due to a possible hyperconjugation effect a facile HCl elimination took place to result in intermediate **9b**. In the subsequent step, a nucleophilic attack of the carboxylate group to the Te center followed by re-aromatization afforded the cyclic compound **9**.

Scheme S1. Plausible mechanism for the formation of compound 9.

Compound	5	8	9	14	15	16	17
Formula	C ₃ H ₁₀ Br ₃ NO ₄ Te	C18.89H32Cl6N2O7.11Te2	C10H15Cl2NO3Te	C14H14O2Se	C14H14O4Se	C ₁₆ H ₁₈ O ₂ Se	C ₁₈ H ₂₂ O ₂ Se
Crystal System	Orthorhombic	monoclinic	monoclinic	monoclinic	monoclinic	triclinic	monoclinic
Space group	P212121	<i>C</i> 2	C2	P21/c	<i>P</i> 2 ₁ / <i>n</i>	<i>P</i> -1	C2/c
T/K	123.00(10)	100(2)	100(2)	123.00(10)	123.00(10)	122.99(10)	100(2)
a [Å]	5.85996(15)	13.6819(2)	32.2340(6)	8.9483(4)	7.41562(5)	7.8964(16)	13.1440(3)
b [Å]	9.5789(3)	9.2677(10)	5.6150(11)	14.4494(5)	8.19270(5)	8.4010(17)	9.1631(18)
c [Å]	20.0889(5)	24.7845(4)	7.6100(15)	9.9106(4)	21.78490(14)	11.5880(2)	13.2700(3)
α [°]	90	90	90	90	90	92.16(3)	90
β [°]	90	100.1830(10)	100.28(3)	106.30(4)	93.5017(6)	96.22(3)	102.61(3)
γ [°]	90	90	90	90	90	106.84(3)	90
V [Å ³]	1127.62(5)	3093.17(8)	1355.20(5)	1229.90(9)	1321.05(15)	729.50(3)	1559.8(6)
Z	4	4	4	4	4	2	4
ρ _{cal} g/cm ³	2.895	1.866	1.939	1.584	1.635	1.463	1.487
µ/mm ⁻¹	13.249	20.001	2.585	3.039	3.931	2.569	2.410
GOF	1.004	1.081	1.112	1.006	1.107	1.086	1.025
2θ range (deg)	7.244 to 63.704	7.248 to 155.306	2.568 to 52.032	7.080 to 64.196	8.132 to 154.908	3.540 to 53.470	5.950 to 53.480
Refs collected	10892	6551	8390	13287	23988	22156	12872
Unique/observe d	3186	6551	2559	3493	2814	3081	1655
Parameters	123	375	163	156	175	244	99
R _{int}	0.0359	0.0793	0.0624	0.0481	0.0455	0.1405	0.0432
<i>R</i> ₁ , <i>wR</i> 2[<i>I</i> >2 <i>s</i> (<i>I</i>)]	0.0222, 0.0429	0.0635, 0.1668	0.0281, 0.0664	0.0353, 0.0814	0.0259, 0.0679	0.0440, 0.1197	0.0359, 0.0943
R1, wR2[All data]	0.0245, 0.0433	0.0636, 0.1669	0.0282, 0.0664	0.0560, 0.0880	0.0264, 0.0683	0.0444, 0.1203	0.0360, 0.0943

 Table S1. Crystallographic data and refinement details for compounds 5, 8, 9, 14, 15, 16, and 17

Figure S39. Molecular structures of **15-17**; thermal ellipsoids are set at the 50 % probability level

Table S	52. The	important	geometrical	parameters	of co	mpound	5
---------	----------------	-----------	-------------	------------	-------	--------	---

Bond length(Å)/	5
Bond Angle (°)	
Te(1) - Br(1) Å	2.704(6)
Te(1) - Br(2) Å	2.665(6)
Te(1) - Br(3) Å	2.655(6)
Te(1) - C(1) Å	2.150(5)
Te(1) - O(1) Å	2.141(3)
C(3) - O(1) Å	1.295(6)
C(3) – O(2) Å	1.219(6)
$Br(1) - Te(1) - Br(2)^{\circ}$	89.39(2)
$Br(3) - Te(1) - Br(2)^{\circ}$	89.59(2)
$Br(1) - Te(1) - Br(3)^{\circ}$	174.94(2)
$O(1) - Te(1) - C(1)^{\circ}$	80.10(1)

Bond length(Å)/	8
Bond Angle (°)	
Te(1) - Cl(1A) Å	2.544(4)
Te(1) - Cl(2A) Å	2.482(4)
Te(2) - Cl(1B) Å	2.531(4)
Te(2) - Cl(2B) Å	2.485(4)
Te(1) - C(1A) Å	2.120(2)
Te(1) - C(7A) Å	2.132(1)
Te(2) - C(1B) Å	2.106(2)
Te(2) - C(7B) Å	2.153(2)
C(9A) – O(1A) Å	1.319(2)
C(9A) – O(2A) Å	1.220(2)
C(9B) – O(1B) Å	1.339(2)
C(9B) – O(2B) Å	1.209(2)
Cl(1A) - Te(1) - Cl(2A) °	171.22(1)
Cl(1B) - Te(2) - Cl(2B) °	172.38(1)
$C(1A) - Te(1) - C(7A)^{\circ}$	99.56(6)
C(1B) - Te(2) - C(7B)°	96.56(6)

Table S3. The important geometrical parameters of compound 8

Bond length(Å)/	9
Bond Angle (°)	
Te(1) - Cl(1) Å	2.466(2)
Te(1) - C(3) Å	2.124(6)
Te(1) - C(4) Å	2.117(5)
Te(1) - O(1) Å	2.160(4)
C(1) - O(1) Å	1.314(7)
C(1) - O(2) Å	1.206(7)
$C(3) - Te(1) - Cl(1)^{\circ}$	89.20(1)
$C(4) - Te(1) - Cl(1)^{\circ}$	89.50(1)
$C(3) - Te(1) - C(4)^{\circ}$	98.10(2)
$O(1) - Te(1) - Cl(1)^{\circ}$	168.00(1)
$O(1) - Te(1) - C(3)^{\circ}$	79.72(2)

Table S4. The important geometrical parameters of compound 9

Table S5. Comparison of the important geometrical parameters of compounds 14-17

Bond length(Å)/	14	15	16	17
Bond Angle (°)				
Se(1) - O(1) Å	1.627(2)	1.620(1)	1.620(2)	1.609(2)
$\operatorname{Se}(1) - \operatorname{O}(1A) \operatorname{\AA}$	1.620(2)	1.619(1)	1.620(2)	1.609(2)
Se(1) - C(1) Å	1.904(3)	1.908(2)	1.903(3)	1.952
$\operatorname{Se}(1) - \operatorname{C}(1A) \operatorname{\AA}$	1.914(3)	1.903(2)	1.912(3)	1.952
$O(1) - Se(1) - O(1A)^{\circ}$	117.87(9)	119.36(7)	118.37(1)	114.49(1)*
$C(1) - Se(1) - O(1)^{\circ}$	108.07(1)	107.17(7)	107.30(1)	106.17
$C(1) - Se(1) - O(1A)^{\circ}$	108.24(1)	106.46(7)	108.19(1)	111.38
$C(1A) - Se(1) - O(1)^{\circ}$	108.51(1)	107.46(7)	108.19(1)	111.38
C(1A) - Se(1) - O(1A) °	108.11(1)	108.89(7)	108.35(1)	106.17
$C(1) - Se(1) - C(1A)^{\circ}$	105.34(1)	106.87(7)	105.76(1)	107.10

*For **17**, bond angle is $O(1)^{1} - Se(1) - O(1)$

Figure S40. Packing diagram of compound 5

Figure S41. Packing diagram of compound 8 (a) and its methyl ester derivative (b)

Figure S42. Packing diagram of compound 9

Figure S43. Packing diagram of compound 14

Figure S44. Packing diagram of compound 15

Figure S45. Packing diagram of compound 16

Figure S46. Packing diagram of compound 17