Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

> Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Studies on Asymmetric Hydroesterification of Enimides. A

Possible Approach to Optically Active β-Amino Acid Derivatives

Junhua Li, Yan Yang, Zichu Wang, and Yian Shi*

Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, P. R. China.

Email: shiyian@cczu.edu.cn

Supporting Information

Table of Contents

General Methods	S-2
Experimental procedures and characterization data	S-2
X-Ray structure of compound 2b	S-12
HPLC data for determination of enantiomeric excesses	S-49
NMR spectra	S-56

General Methods. All commercially available reagents were used without further purification unless otherwise noted. All dry solvents were purified with solvent purification system before use. Column chromatography was performed on silica gel (300-400 mesh). ¹H NMR spectra were recorded on a 400 MHz NMR spectrometer, ¹³C NMR spectra were recorded on a 100 MHz NMR spectrometer, and ³¹P NMR spectra were recorded on a 162 MHz NMR spectrometer. IR spectra were recorded on a FT-IR spectrometer. Melting points were uncorrected. Phenyl formate was prepared according to the reported procedures.¹ Enimide **1a-1j** were synthesized according to the literature procedures.² Ligand **L15** was prepared as described in Scheme S1.

- (a) Y. Katafuchi, T. Fujihara, T. Iwai, J. Terao, and Y. Tsuji, *Adv. Synth. Catal.*, 2011, 353, 475–482;
 (b) T. Ueda, H. Konishi, and K. Manabe, *Org. Lett.*, 2012, 14, 3100–3103.
- (a) V. I. Timokhin, N. R. Anastasi, and S. S. Stahl, J. Am. Chem. Soc., 2003, 125, 12996-12997;
 (b) J. L. Brice, J. E. Harang, V. I. Timokhin, N. R. Anastasi, and S. S. Stahl, J. Am. Chem. Soc., 2005, 127, 2868-2869.

Scheme S1. Synthesis of L15

Procedure for phosphine oxide S2. To a solution of diethyl phosphite (1.38 g, 10.0 mmol) in THF (10 mL) at 0 °C under Ar atmosphere, was added dropwise 3.5-dimethylphenylmagnesium bromide (0.5 M in THF) (50.0 mL, 25.0 mmol). Upon stirring at 0 °C for 10 min and at rt for 16 h, the reaction mixture was quenched by slow addition of sat. aqueous NH₄Cl solution at 0 °C, extracted with ether, washed with brine, dried over Na₂SO₄, filtered, concentrated under reduced pressure, and purified by column chromatography (silica gel, eluent: petroleum ether:ethyl acetate = 1:1) to give phosphine oxide **S2** as a white solid (2.09 g, 81% yield).¹ IR (film) 1600, 1275, 1192,

1128, 954, 691, 589 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 477.6 Hz, 1H), 7.29 (dd, J = 14.0 Hz, 4H), 7.17 (s, 2H), 2.33 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 138.8 (d, J = 13.4 Hz,), 134.4 (d, J = 3.0 Hz), 131.4 (d, J = 100 Hz), 128.3 (d, J = 11.5 Hz), 21.4; ³¹P NMR (162 MHz, CDCl₃) δ 22.8.

1) M. Jin and M. Nakamura, Chem. Lett., 2013, 42, 1035-1037.

Procedure for phosphine oxide S3: To a solution of phosphine oxide **S2** (2.84 g, 11.0 mmol) and 4,5-bis(iodomethyl)-2,2-dimethyl-1,3-dioxolane **S1**¹ (1.91 g, 5.0 mmol) in THF (20 mL) at 0 °C under Ar atmosphere, was added dropwise LHMDS (1.0 M THF solution) (11.0 mL, 11.0 mmol). Upon stirring at 0 °C for 18 h, the reaction mixture was quenched with sat. aqueous NH₄Cl, extracted with ethyl acetate (3 × 40 mL), washed with brine, dried over anhydrous Na₂SO₄, filtered, concentrated under reduced pressure, and purified by column chromatography (silica gel, eluent: CH₂Cl₂:MeOH = 30:1) to give phosphine oxide **S3** as a white solid (2.99 g, 93% yield).² [α]_D²⁵ = +22.8 (*c* 1.0, CHCl₃); IR (film) 1599, 1377, 1181, 1127, 852, 695 cm⁻¹; ⁻¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 12.0 Hz, 8H), 7.08 (d, *J* = 2.0 Hz, 4H), 4.13-4.09 (m, 2H), 2.62-2.52 (m, 4H), 2.30 (s, 24H), 1.21 (s, 6H); ⁻¹³C NMR (100 MHz, CDCl₃) δ 138.4 (d, *J* = 12.5 Hz), 138.1 (d, *J* = 12.4 Hz), 133.559 (d, *J* = 46.1 Hz), 133.558 (d, *J* = 2.9 Hz), 133.4 (d, *J* = 2.9 Hz), 132.6 (d, *J* = 46.2 Hz), 128.8 (d, *J* = 9.5 Hz), 128.4 (d, *J* = 9.4 Hz), 109.4, 76.7 (dd, *J* = 11.2, 3.2 Hz), 33.4 (d, *J* = 70.4 Hz), 27.0, 21.4; ⁻³¹P NMR (162 MHz, CDCl₃) δ 29.8;

- For preparation of **S1**, see: S. P. Khanapure, N. Najafi, S. Manna, J.-J. Yang, and J. Rokach, *J. Org. Chem.*, **1995**, *60*, 7548-7551.
- Y. Ohmaru, N. Sato, M. Mizutani, S. Kotani, M. Sugiura, and M. Nakajima, Org. Biomol. Chem., 2012, 10, 4562–4570.

Procedure for ligand L15: To a mixture of phosphine oxide **S3** (2.99 g, 4.65 mmol) and anhydrous Na₂SO₄ (0.299 g) in dry toluene (15 mL) at rt under Ar atmosphere, were added dropwise (Me₂SiH)₂NH (1.55 g, 11.6 mmol) and Ti(O*i*-Pr)₄ (1.322 g, 4.65 mmol) successively.¹ Upon stirring at 60 °C for 24 h, the reaction mixture was cooled to rt, filtered, washed with cold pentane, concentrated under reduced pressure, and purified by column chromatography (silica gel, eluent: petroleum ether:ethyl acetate = 20:1) to give

ligand **L15** as a viscous liquid (2.30 g, 81% yield).² $[\alpha]_D^{25} = -4.5$ (*c* 1.0, CHCl₃); IR (film) 1598, 1259, 1091, 1038, 843, 801, 691 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.08 (d, *J* = 7.6 Hz, 4H), 7.04 (d, *J* = 7.6 Hz, 4H), 6.95 (s, 2H), 6.93 (s, 2H), 3.87-3.80 (m, 2H), 2.43-2.20 (m, 4H), 2.27 (s, 24H), 1.38 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 138.5 (d, *J* = 12.2 Hz), 138.1 (d, *J* = 12.3 Hz), 138.0 (d, *J* = 7.4 Hz), 137.9 (d, *J* = 7.1 Hz), 131.0, 130.84, 130.75, 130.52, 130.47, 130.34, 108.9, 80.0 (dd, *J* = 14.3, 7.2 Hz), 32.4 (dd, *J* = 15.2, 3.3 Hz), 27.5, 21.5; ³¹P NMR (162 MHz, CDCl₃) δ -23.8; HRMS (ESI) m/z (M+H)⁺ Calcd for C₃₉H₄₉O₂P₂ 611.3202; found 611.3207.

- C. Petit, A. Favre-Reguillon, B. Albela, L. Bonneviot, G. Mignani, and M. Lemaire, *Organometallics*, 2009, 28, 6379–6382.
- 2) P. Koschker, M. Kähny, and B. Breit, J. Am. Chem. Soc., 2015, 137, 3131-3137.

Representative procedure for asymmetric hydroesterification (Table 3, 2a).

To a mixture of $(\eta^3-C_3H_5)_2Pd_2Cl_2$ (0.0018 g, 0.0050 mmol), L15 (0.0122 g, 0.020 mmol), and enimide 1a (0.0499 g, 0.20 mmol) in toluene (0.1 mL), was added HCO₂Ph (0.0488 g, 0.40 mmol) via syringe. The vial was purged with Ar to remove the air and tightly sealed with a septum cap. Upon stirring at 70 °C for 60 h, the reaction mixture was cooled to rt, and purified by flash chromatography (silica gel, eluent: petroleum ether:ethyl acetate = 8:1) to give amino ester 2a as a white solid (0.0728 g, 98% yield, 83:17 er) (*Racemate synthesis:* Enimide 1 and amino ester 2 were found to be inseparable by chromatography. To have complete conversions, racemates of amino esters 2 were prepared with 10 mol% racemic DIOP [by combining 50% (+)-DIOP and 50% (-)-DIOP] at 90 °C for 72 h).

Procedure for gram scale asymmetric hydroesterification reaction (Scheme 3).

To a mixture of (η³-C₃H₅)₂Pd₂Cl₂ (0.0274 g, 0.075 mmol), L15 (0.1832 g, 0.30 mmol),

and enimide **1a** (0.7478 g, 3.0 mmol) in toluene (1.5 mL), was added HCO₂Ph (0.7327 g, 6.0 mmol) via syringe. The vial was purged with Ar to remove the air and tightly sealed with a septum cap. Upon stirring at 70 °C for 60 h, the reaction mixture was cooled to rt, and purified by flash chromatography (silica gel, eluent: petroleum ether:ethyl acetate = 8:1) to give amino ester **2a** as a white solid (1.066 g, 96% yield, 83:17 er).

Recrystallization: A portion of the amino ester (0.8722 g) was completely dissolved in a mixture of ethyl acetate (25 mL) and petroleum ether (30 mL) at 65 °C. The resulting solution was cooled to room temperature and the solvent was allowed to evaporate slowly for 4 days. The mixture was filtered to give a white solid (0.3679 g, 42% yield, 63:37 er). The mother liquid was concentrated under reduced pressure to give a white solid (0.4983 g, 57% yield, 97.5:2.5 er), which was dissolved again in a mixture of ethyl acetate (10 mL) and petroleum ether (20 mL) at 65 °C. The resulting solution was placed at room temperature for 3 days, allowing slow evaporation of the solvent. The mixture was filtered to give a white solid (0.136 g, 16% yield, 92:8 er). The mother liquid was concentrated under reduced pressure to give a white solid (0.3598 g, 41% yield, 99:1 er).

Table 3, 2a

White solid; mp. 120.5-122.4 °C; $[\alpha]_D^{25} = -11.6 (c \ 1.0, \text{CHCl}_3) (83:17 \text{ er});$ IR (film) 1757, 1711, 1387, 1195, 720 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.83-7.79 (m, 2H), 7.70-7.66 (m, 2H), 7.61 (d, J = 7.2 Hz, 2H), 7.40-7.30 (m, 5H), 7.18 (t, J = 7.2 Hz, 1H), 6.97 (d, J = 7.6 Hz, 2H), 5.96 (dd, J = 10.0, 5.6 Hz, 1H), 4.06 (dd, J = 16.8, 10.4 Hz, 1H), 3.54 (dd, J = 16.8, 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 168.3, 150.5, 138.4, 134.3, 131.9, 129.6, 129.0, 128.6, 128.1, 126.1, 123.6, 121.6, 51.1, 36.3; HRMS (ESI) m/z (M+Na)⁺ Calcd for C₂₃H₁₇NO₄Na 394.1050; found 394.1050.

Table 3, 2b

(X-ray structure)

White solid; mp. 138.3-140.0 °C; $[\alpha]_D^{25} = -11.0 \ (c \ 1.0, \text{CHCl}_3) \ (82:18 \text{ er});$ IR (film) 1758, 1711, 1492, 1386, 1195, 717 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.86-7.75 (m, 2H), 7.75-7.66 (m, 2H), 7.55 (d, J = 8.4 Hz, 2H), 7.37-7.28 (m, 4H), 7.19 (t, J = 7.2 Hz, 1H), 6.97 (d, J = 7.6 Hz, 2H), 5.92 (dd, J = 10.0, 6.4 Hz, 1H), 3.98 (dd, J = 16.4, 9.6 Hz, 1H), 3.54 (dd, J = 16.4, 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 168.1, 150.4, 136.9, 134.5, 134.4, 131.8, 129.61, 129.56, 129.2, 126.2, 123.7, 121.5, 50.35, 36.2; HRMS (ESI) m/z: (M+Na)⁺ Calcd for C₂₃H₁₆CINO₄Na 428.0660; found 428.0660.

Table 3, 2c

White solid; mp. 111.4-113.4 °C; $[\alpha]_D^{25} = -15.8 \ (c \ 1.0, \text{CHCl}_3) \ (83:17 \text{ er});$ IR (film) 1757, 1710, 1387, 1162, 717 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.75 (m, 2H), 7.72-7.66 (m, 2H), 7.64-7.57 (m, 2H), 7.32 (t, J = 7.6 Hz, 2H), 7.18 (t, J = 7.2 Hz, 1H), 7.05 (t, J = 8.8 Hz, 2H), 6.96 (d, J = 7.6 Hz, 2H), 5.93 (dd, J = 9.6, 6.0 Hz, 1H), 3.99 (dd, J = 16.8, 10.0 Hz, 1H), 3.54 (dd, J = 16.4, 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 168.2, 162.7 (d, J = 245.9 Hz), 150.4, 134.34, 134.31 (d, J = 5.2 Hz), 131.8, 130.0 (d, J = 8.2 Hz), 129.6, 126.2, 123.6, 121.5, 115.9 (d, J = 21.3 Hz), 50.4, 36.4; HRMS (ESI) m/z: (M+Na)⁺ Calcd for C₂₃H₁₆FNO₄Na 412.0956; found 412.0955.

Table 3, 2d

White solid; mp. 87.9-89.6 °C; $[\alpha]_D^{25} = -11.8$ (*c* 1.0, CHCl₃) (83:17 er); IR (film) 1758, 1712, 1369, 1195, 717 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.84-7.78 (m, 2H), 7.70-7.65 (m, 2H), 7.50 (d, J = 8.0 Hz, 2H), 7.32 (t, J = 7.6 Hz, 2H), 7.21-7.15 (m, 3H), 6.98 (d, J = 8.0 Hz, 2H), 5.94 (dd, J = 10.0, 6.0 Hz, 1H), 4.04 (dd, J = 16.4, 10.0 Hz, 1H), 3.53 (dd, J = 16.4, 5.6 Hz, 1H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 168.2, 150.5, 138.3, 135.5, 134.2, 131.9, 129.6, 129.5, 128.0, 126.1, 123.5, 121.6, 50.8, 36.3, 21.3; HRMS (ESI) m/z: (M+Na)⁺ calcd for C₂₄H₁₉NO₄Na 408.1206; found 408.1208.

Table 3, 2e

White solid; mp. 112.4-114.5 °C; $[\alpha]_D^{25} = -16.8$ (*c* 1.0, CHCl₃) (82:18 er); IR (film) 1757, 1710, 1387, 1194, 717 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.83-7.78 (m, 2H), 7.70-7.65 (m, 2H), 7.55 (d, *J* = 8.8 Hz, 2H), 7.31 (t, *J* = 7.6 Hz, 2H), 7.18 (t, *J* = 7.2 Hz, 1H), 6.96 (d, *J* = 7.6 Hz, 2H), 6.89 (d, *J* = 8.8 Hz, 2H), 5.91 (dd, t, *J* = 10.0, 6.0 Hz, 1H), 4.01 (dd, *J* = 16.4, 10.0 Hz, 1H), 3.79 (s, 3H), 3.52 (dd, *J* = 16.4, 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 168.3, 159.6, 150.5, 134.2, 132.0, 130.6, 129.6, 129.5, 126.1, 123.5, 121.6, 114.3, 55.5, 50.5, 36.5; HRMS (ESI) m/z: (M+Na)⁺ Calcd for C₂₄H₁₉NO₅Na 424.1155; found 424.1154.

Table 3, 2f

White solid; mp. 80.0-81.6 °C; $[\alpha]_D^{25} = -2.8 (c \ 1.0, CHCl_3) (82:18 \text{ er});$ IR (film) 1755, 1711, 1353, 1193, 717 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.87 (d, J = 7.6 Hz, 1H), 7.84-7.76 (m, 2H), 7.72-7.65 (m, 2H), 7.35-7.15 (m, 6H), 6.96 (d, J = 7.6 Hz, 2H), 6.16 (dd, J = 10.0, 6.4 Hz, 1H), 3.98 (dd, J = 16.4, 9.6 Hz, 1H), 3.49 (dd, J = 16.4, 6.0 Hz, 1H), 2.55 (s, 3H); ¹³C NMR (100 MHz, CDCl_3) δ 169.5, 168.5, 150.5, 136.7, 136.5, 134.3, 131.9, 131.0, 129.6, 128.5, 128.3, 126.6, 126.1, 123.5, 121.6, 47.8, 36.9, 19.9; HRMS (ESI) m/z: (M+Na)⁺ Calcd for C₂₄H₁₉NO₄Na 408.1206; found 408.1206.

Table 3, 2g

White solid; mp. 85.5-87.3 °C; $[\alpha]_D^{25} = -8.3 (c \ 1.0, CHCl_3) (82:18 \text{ er});$ IR (film) 1756, 1708, 1363, 1193, 722 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.83-7.78 (m, 2H), 7.70-7.64 (m, 2H), 7.35-7.26 (m, 3H), 7.21-7.15 (m, 3H), 7.01-6.96 (m, 2H), 6.86 (dd, J = 8.0, 1.6 Hz, 1H), 5.93 (dd, J = 10.0, 5.6 Hz, 1H), 4.06 (dd, J = 16.4, 10.4 Hz, 1H), 3.81 (s, 3H), 3.53 (dd, J = 16.8, 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl_3) δ 169.4, 168.2, 160.0, 150.5, 139.9, 134.2, 131.9, 130.0, 129.5, 126.1, 123.5, 121.5, 120.2, 113.9, 113.7, 55.4, 51.0, 36.2; HRMS (ESI) m/z: (M+Na)⁺ Calcd for C₂₄H₁₉NO₅Na 424.1155; found 424.1154.

Table 3, 2h

White solid; mp. 92.5-94.5 °C; $[\alpha]_D^{25} = -8.7 (c \ 1.0, \text{CHCl}_3) (81:19 \text{ er});$ IR (film) 1756,

1710, 1382, 1193, 721 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.90-7.80 (m, 5H), 7.73 (dd, J = 8.4, 1.2 Hz, 1H), 7.71-7.65 (m, 2H), 7.52-7.45 (m, 2H), 7.31 (t, J = 8.0 Hz, 2H), 7.18 (t, J = 7.6 Hz, 1H), 6.99 (d, J = 8.4 Hz, 2H), 6.13 (dd, J = 10.0, 5.6 Hz, 1H), 4.16 (dd, J = 16.4, 10.0 Hz, 1H), 3.66 (dd, J = 16.8, 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 168.3, 150.5, 135.8, 134.3, 133.4, 133.2, 131.9, 129.6, 128.9, 128.4, 127.8, 127.2, 126.63, 126.60, 126.1, 125.7, 123.6, 121.6, 51.2, 36.3; HRMS (ESI) m/z: (M+Na)⁺ Calcd for C₂₇H₁₉NO₄Na 444.1206; found 444.1207.

Table 3, 2i

White solid; mp. 126.9-128.2 °C; $[\alpha]_D^{25} = -19.9 (c \ 1.0, \text{CHCl}_3) (76:24 \text{ er});$ IR (film) 1758, 1710, 1371, 1192, 721 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.79 (m, 2H), 7.71-7.65 (m, 2H), 7.28 (t, J = 8.0 Hz, 2H), 7.15 (t, J = 7.6 Hz, 1H), 6.95 (d, J = 7.6 Hz, 2H), 4.49 (td, J = 10.8, 4.0 Hz, 1H), 3.47 (dd, J = 15.6, 11.2 Hz, 1H), 3.10 (dd, J = 16.0, 4.0 Hz, 1H), 2.20-2.05 (m, 1H), 1.94 (d, J = 12.4 Hz, 1H), 1.81 (d, J = 13.2 Hz, 1H), 1.75-1.55 (m, 3H), 1.37-0.90 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 168.6, 150.5, 134.1, 131.8, 129.5, 126.0, 123.4, 121.5, 53.3, 39.5, 34.7, 30.7, 29.9, 26.1, 25.9, 25.8; HRMS (ESI) m/z: (M+Na)⁺ Calcd for C₂₃H₂₃NO₄Na 400.1519; found 400.1519.

Colorless oil; $[\alpha]_D^{25} = -11.0$ (*c* 1.0, CHCl₃) (72:28 er); IR (film) 1758, 1710, 1371, 1193, 720 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.80 (m, 2H), 7.73-7.67 (m, 2H), 7.31 (t, *J* = 7.6 Hz, 2H), 7.17 (t, *J* = 7.2 Hz, 1H), 6.99 (d, *J* = 8.0 Hz, 2H), 4.84-4.73 (m, 1H), 3.44 (dd, *J* = 16.0, 10.0 Hz, 1H), 3.03 (dd, *J* = 16.0, 5.2 Hz, 1H), 2.25-2.10 (m, 1H),

1.87-1.77 (m, 1H), 1.40-1.20 (m, 8H), 0.85 (t, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 168.5, 150.5, 134.2, 131.9, 129.5, 126.0, 123.5, 121.6, 48.3, 37.3, 32.6, 31.8, 28.9, 26.5, 22.7, 14.2; HRMS (ESI) m/z: (M+Na)⁺ Calcd for C₂₃H₂₅NO₄Na 402.1676; found 402.1674.

Scheme 4 The synthesis and derivatization of β-amino acid.

Procedure for amino acid 3. A solution of amino ester **2a** (0.1857 g, 0.50 mmol) in 6 N HCl (15 mL) and dioxane (1.0 mL) was stirred at 100 °C for 12 h.¹ The reaction mixture was cooled to rt and washed with ether (3x5.0 mL). The aqueous phase was concentrated to give amino acid hydrochloride **3** as a white solid (0.1008 g, 99% yield). mp. 178.3-180.2 °C; $[\alpha]^{25}_{D} = +2.0$ (*c* 1.0, H₂O) [litt.² $[\alpha]^{25}_{D} = +2.8$ (*c* 0.28, H₂O) for 97.5:2.5 er, for *S*-configuration]; ¹H NMR (400 MHz, D₂O) δ 7.49-7.41 (m, 5H), 4.75 (t, *J* = 7.2 Hz, 1H), 3.16 (dd, *J* = 17.2, 8.0 Hz, 1H), 3.06 (dd, *J* = 17.2, 6.8 Hz, 1H); ¹³C NMR (100 MHz, D₂O) δ 173.5, 135.1, 129.6, 129.3, 126.9, 51.4, 37.7.

Procedure for amino ester 4. ^{1a}To a solution of amino acid hydrochloride **3** (0.0403 g, 0.20 mmol) in MeOH (1.0 mL) at -20 °C, was added SOCl₂ (0.436 g, 3.6 mmol) dropwise. The reaction mixture was warmed to rt, stirred overnight, and concentrated. The resulting residue was dissolved in CH₂Cl₂ (2.0 mL), followed by the successive addition of NEt₃ (0.060 g, 0.60 mmol) and BzCl (0.042 g, 0.30 mmol). Upon stirring at rt for 30 min, the reaction mixture was concentrated and purified by flash chromatography (silica gel, petroleum ether:EtOAc = 5:1 to 3:1) to afford *N*-benzoyl amino ester **4** (0.0555 g, 98% yield, 97.5:2.5 er). mp. 114.8-116.7 °C; $[\alpha]^{25}_{D} = +16.9$ (*c* 1.0, CHCl₃) (97.5:2.5

er), [litt.³ [α]²⁰_D = -20.6 (*c* 0.85, CHCl₃) for *R*-configuration]; IR (film) 3348, 1732, 1635 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 7.2 Hz, 2H), 7.66-7.56 (m, 1H), 7.53-7.46 (m, 1H), 7.44-7.36 (m, 2H), 7.36-7.27 (m, 4H), 7.27-7.21 (m, 1H), 5.65-5.30 (m, 1H), 3.61 (s, 3H), 3.02 (dd, *J* = 15.6, 5.6 Hz, 1H), 2.92 (dd, *J* = 15.6, 5.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 166.8, 140.7, 134.3, 131.8, 128.9, 128.7, 127.8, 127.2, 126.4, 52.1, 50.0, 39.8;

- (a) X. Xiao, M. Liu, C. Rong, F. Xue, S. Li, Y. Xie and Y. Shi, *Org. Lett.*, 2012, 20, 5270-5273;
 (b) C.-H. Lee, J.-S. Lee, H.-K. Na, D.-W. Yoon, H. Miyaji, W.-S. Cho and J. L. Sessler, *J. Org. Chem.*, 2005, 70, 2067-2074.
- 2) (a) E. Forró, T. Paál, G. Tasnádi and F. Fülöp, *Adv. Synth. Catal.*, 2006, 348, 917-923;
 (b) J. Lai, S. Sayalero, A. Ferrali, L. Osorio-Planes, F. Bravo, C. Rodriguez-Escrich and M. A. Pericàs, *Adv. Synth. Catal.*, 2018, 360, 2914-2924.
- 3) P. Gizecki, R. Dhal, L. Toupet and G. Dujardin, Org. Lett., 2000, 2, 585-588.

The X-ray structure of compound **2b**

Compound **2b** (0.10 g, >99:1 er) was dissolved in ethyl acetate (2 mL) and petroleum ether (6 mL). The solvent was allowed to slowly evaporate at rt to get a colorless crystal suitable for X-ray diffraction analysis. The intensity data were collected on a D8 VENTURE instrument. The data were outlined below.

Figure S-1. Ortep diagram of compound **2b** (the thermal ellipsoids are drawn at the 30% probability level).

z 2b.	
2b	
C23 H16 Cl N O4	
405.82	
293(2) K	
0.71073 Å	
Triclinic	
P 1	
a = 10.606(3) Å	$\alpha = 65.747(7)^{\circ}.$
b = 14.275(4) Å	β= 88.159(7)°.
c = 15.503(5) Å	$\gamma = 71.091(7)^{\circ}.$
2010.6(10) Å ³	
4	
1.341 Mg/m ³	
0.219 mm ⁻¹	
840	
$0.170 \ge 0.140 \ge 0.110 \text{ mm}^3$	
2.044 to 25.499°.	
-12<=h<=12, -17<=k<=16, -16<=l<=18	
23840	
11905 [R(int) = 0.0480]	
99.7 %	
Semi-empirical from equivalen	its
0.7456 and 0.6010	
Full-matrix least-squares on F ²	
11905 / 118 / 1103	
1.008	
R1 = 0.0722, $wR2 = 0.1841$	
R1 = 0.1436, wR2 = 0.2434	
0.06(5)	
0.016(3)	
0.285 and -0.230 e.Å ⁻³	
	2 b 2 b C23 H16 Cl N O4 405.82 293(2) K 0.71073 Å Triclinic P 1 a = 10.606(3) Å b = 14.275(4) Å c = 15.503(5) Å 2010.6(10) Å ³ 4 1.341 Mg/m ³ 0.219 mm ⁻¹ 840 0.170 x 0.140 x 0.110 mm ³ 2.044 to 25.499°. -12<=h<=12, -17<=k<=16, -16 23840 11905 [R(int) = 0.0480] 99.7 % Semi-empirical from equivalent 0.7456 and 0.6010 Full-matrix least-squares on F ² 11905 / 118 / 1103 1.008 R1 = 0.0722, wR2 = 0.1841 R1 = 0.1436, wR2 = 0.2434 0.06(5) 0.016(3) 0.285 and -0.230 e.Å ⁻³

	X	У	Z	U(eq)
 Cl(1)	6160(4)	5861(3)	11844(3)	134(1)
Cl(1A)	7259(5)	6712(4)	7241(3)	162(2)
Cl(1B)	5702(3)	7134(3)	3614(2)	116(1)
Cl(1C)	4157(7)	6168(4)	-1873(3)	190(2)
N(1)	8673(9)	9479(7)	8783(6)	85(2)
N(1A)	9693(7)	8808(6)	3123(5)	70(2)
N(1B)	3096(6)	3766(6)	6932(5)	65(2)
N(1C)	2481(9)	4331(8)	2600(7)	96(3)
O(1)	8103(9)	10822(8)	9298(8)	132(3)
O(2)	9900(8)	8148(9)	8302(7)	121(3)
O(3)	7536(9)	11258(8)	6966(6)	110(2)
O(4)	7356(9)	10476(8)	6028(7)	113(3)
O(1A)	11900(7)	8542(6)	3522(6)	96(2)
O(2A)	7812(7)	8818(6)	2428(5)	93(2)
O(3A)	9891(8)	10998(6)	2249(6)	125(3)
O(4A)	7799(7)	12121(6)	1664(5)	88(2)
O(1B)	4044(10)	2601(8)	6246(7)	122(3)
O(2B)	1545(7)	4832(8)	7529(7)	108(3)
O(3B)	4636(7)	1486(7)	8617(5)	94(2)
O(4B)	4705(7)	2537(5)	9335(5)	86(2)
O(1C)	394(10)	4457(10)	2075(8)	142(4)
O(2C)	4151(8)	4454(9)	3419(7)	140(4)
C(1)	8961(12)	10178(11)	9103(10)	97(3)
C(2)	10399(11)	9978(11)	9080(9)	99(4)
C(3)	11180(13)	10422(12)	9331(11)	123(5)
C(4)	12483(18)	10061(15)	9286(13)	139(5)
C(5)	13068(15)	9194(18)	9065(12)	141(6)
C(6)	12252(12)	8745(13)	8763(9)	113(4)
C(7)	10937(11)	9151(11)	8777(8)	91(3)
C(8)	9819(10)	8824(11)	8599(8)	87(3)
C(9)	7324(10)	9501(9)	8606(8)	90(3)
C(10)	7013(11)	9624(11)	7625(8)	102(4)
C(11)	7335(12)	10545(12)	6812(11)	98(4)

Table S2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **2b**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(12)	7717(14)	11257(11)	5290(10)	98(4)
C(13)	6821(12)	12209(10)	4696(9)	94(3)
C(14)	7240(16)	12922(12)	3927(11)	113(4)
C(15)	8510(20)	12709(19)	3782(13)	138(6)
C(16)	9429(17)	11707(19)	4399(17)	139(6)
C(17)	9041(15)	10978(13)	5153(13)	119(4)
C(18)	7014(9)	8557(9)	9415(8)	80(3)
C(19)	6372(12)	8735(11)	10136(10)	97(3)
C(20)	6142(12)	7890(13)	10875(9)	102(4)
C(21)	6526(11)	6874(10)	10905(9)	93(3)
C(22)	7090(19)	6718(12)	10185(13)	147(6)
C(23)	7398(17)	7524(12)	9461(12)	136(6)
C(1A)	11070(10)	8473(8)	3060(8)	75(3)
C(2A)	11241(9)	8014(8)	2355(7)	71(2)
C(3A)	12412(10)	7544(9)	2033(8)	84(3)
C(4A)	12246(13)	7178(10)	1374(9)	99(3)
C(5A)	10988(15)	7218(11)	1046(8)	103(4)
C(6A)	9915(12)	7685(10)	1357(8)	94(3)
C(7A)	10017(10)	8081(8)	2043(7)	70(2)
C(8A)	8987(10)	8610(8)	2514(6)	69(2)
C(9A)	9120(9)	9430(7)	3687(7)	71(2)
C(10A)	8106(10)	10514(8)	3068(8)	84(3)
C(11A)	8716(12)	11207(9)	2270(9)	90(3)
C(12A)	8234(10)	12802(9)	867(8)	82(3)
C(13A)	8115(14)	12721(12)	42(10)	120(4)
C(14A)	8556(17)	13362(14)	-748(10)	133(5)
C(15A)	9095(13)	14090(11)	-690(9)	106(4)
C(16A)	9234(10)	14150(9)	142(10)	98(3)
C(17A)	8834(11)	13473(9)	960(8)	89(3)
C(18A)	8610(10)	8742(9)	4561(7)	78(3)
C(19A)	9443(11)	8138(10)	5417(9)	97(3)
C(20A)	9036(16)	7507(12)	6258(10)	118(4)
C(21A)	7800(17)	7489(11)	6219(9)	115(4)
C(22A)	6967(15)	8035(15)	5416(11)	139(6)
C(23A)	7373(13)	8673(12)	4579(9)	118(4)
C(1B)	3090(12)	3074(11)	6514(8)	87(3)
C(2B)	1656(13)	3107(12)	6482(9)	103(4)

C(4B)	-370(30)	2830(30)	6208(18)	248(16)
C(5B)	-990(20)	3460(30)	6613(14)	227(16)
C(6B)	-410(15)	3972(18)	6906(10)	153(7)
C(7B)	965(12)	3756(13)	6859(9)	103(4)
C(8B)	1813(10)	4221(10)	7152(8)	84(3)
C(9B)	4244(9)	4030(8)	7140(7)	73(3)
C(10B)	5379(9)	2998(8)	7786(8)	84(3)
C(11B)	4893(9)	2266(10)	8586(8)	76(3)
C(12B)	4221(10)	1890(9)	10117(8)	80(3)
C(13B)	5076(11)	1005(9)	10854(8)	83(3)
C(14B)	4558(14)	380(10)	11585(9)	97(3)
C(15B)	3215(14)	615(11)	11614(9)	96(3)
C(16B)	2372(12)	1530(12)	10868(10)	102(4)
C(17B)	2845(11)	2169(9)	10132(9)	88(3)
C(18B)	4636(8)	4772(8)	6265(7)	63(2)
C(19B)	4069(12)	5874(10)	5938(8)	94(3)
C(20B)	4381(11)	6613(9)	5108(9)	95(3)
C(21B)	5292(10)	6195(10)	4618(7)	79(3)
C(22B)	5833(11)	5101(11)	4886(9)	95(3)
C(23B)	5478(11)	4397(10)	5705(9)	89(3)
C(1C)	1081(13)	4575(11)	2591(10)	103(4)
C(2C)	671(10)	5058(9)	3288(8)	81(3)
C(3C)	-525(13)	5460(12)	3543(11)	114(4)
C(4C)	-566(16)	5886(11)	4200(10)	108(4)
C(5C)	551(16)	5897(9)	4597(9)	102(4)
C(6C)	1778(13)	5486(9)	4315(8)	94(3)
C(7C)	1838(10)	5056(9)	3683(7)	77(3)
C(8C)	2991(13)	4588(11)	3271(9)	97(3)
C(9C)	3470(13)	3714(11)	2173(9)	108(4)
C(10C)	3200(20)	2683(11)	2320(10)	153(6)
O(3C)	2850(30)	1390(30)	3706(18)	184(6)
O(4C)	4970(30)	1270(20)	3720(20)	227(9)
C(11C)	3720(30)	1800(30)	3340(20)	193(7)
C(12C)	3730(30)	382(19)	4603(14)	168(6)
C(13C)	2890(30)	-180(20)	4569(13)	159(6)
C(14C)	2720(30)	-990(20)	5400(18)	154(6)
C(15C)	3390(30)	-1244(18)	6265(13)	148(6)
C(16C)	4230(20)	-690(20)	6300(14)	158(6)

C(17C)	4400(20)	130(20)	5469(19)	164(6)
O(3')	2040(20)	2400(14)	3735(14)	144(6)
O(4')	3801(18)	1060(13)	3712(13)	97(3)
C(11')	2960(20)	2040(18)	3339(16)	103(4)
C(12')	3385(19)	541(13)	4632(10)	98(3)
C(13')	3040(20)	-379(15)	4825(11)	97(4)
C(14')	3000(20)	-1073(13)	5761(13)	103(4)
C(15')	3301(18)	-847(13)	6504(10)	108(4)
C(16')	3648(17)	73(15)	6311(11)	103(4)
C(17')	3689(17)	767(12)	5375(12)	99(4)
C(18C)	3523(13)	4351(9)	1140(8)	89(3)
C(19C)	2471(16)	4906(15)	468(12)	140(5)
C(20C)	2740(20)	5482(13)	-535(9)	136(5)
C(21C)	3950(20)	5440(15)	-687(13)	127(5)
C(22C)	5020(20)	4921(16)	-13(16)	160(7)
C(23C)	4738(14)	4331(13)	909(11)	136(6)

Cl(1)-C(21)	1.720(13)
Cl(1A)-C(21A)	1.725(13)
Cl(1B)-C(21B)	1.740(11)
Cl(1C)-C(21C)	1.749(17)
N(1)-C(8)	1.376(14)
N(1)-C(1)	1.395(14)
N(1)-C(9)	1.453(12)
N(1A)-C(8A)	1.390(12)
N(1A)-C(1A)	1.396(12)
N(1A)-C(9A)	1.475(11)
N(1B)-C(1B)	1.386(14)
N(1B)-C(8B)	1.403(13)
N(1B)-C(9B)	1.467(12)
N(1C)-C(8C)	1.409(14)
N(1C)-C(1C)	1.410(14)
N(1C)-C(9C)	1.466(14)
O(1)-C(1)	1.197(13)
O(2)-C(8)	1.208(13)
O(3)-C(11)	1.217(15)
O(4)-C(11)	1.259(15)
O(4)-C(12)	1.378(15)
O(1A)-C(1A)	1.205(11)
O(2A)-C(8A)	1.182(10)
O(3A)-C(11A)	1.187(12)
O(4A)-C(11A)	1.327(12)
O(4A)-C(12A)	1.397(12)
O(1B)-C(1B)	1.189(12)
O(2B)-C(8B)	1.197(13)
O(3B)-C(11B)	1.212(13)
O(4B)-C(11B)	1.357(13)
O(4B)-C(12B)	1.390(12)
O(1C)-C(1C)	1.195(14)
O(2C)-C(8C)	1.197(13)
C(1)-C(2)	1.460(16)
C(2)-C(3)	1.344(17)
C(2)-C(7)	1.394(17)

Table S3. Bond lengths [Å] and angles [°] for **2b**.

C(3)-C(4)	1.32(2)
C(3)-H(3)	0.9300
C(4)-C(5)	1.37(2)
C(4)-H(4)	0.9300
C(5)-C(6)	1.42(2)
C(5)-H(5)	0.9300
C(6)-C(7)	1.329(16)
C(6)-H(6)	0.9300
C(7)-C(8)	1.478(16)
C(9)-C(10)	1.493(15)
C(9)-C(18)	1.540(14)
C(9)-H(9)	0.9800
C(10)-C(11)	1.529(17)
C(10)-H(10A)	0.9700
C(10)-H(10B)	0.9700
C(12)-C(13)	1.338(16)
C(12)-C(17)	1.366(18)
C(13)-C(14)	1.384(18)
C(13)-H(13)	0.9300
C(14)-C(15)	1.31(2)
C(14)-H(14)	0.9300
C(15)-C(16)	1.40(2)
C(15)-H(15)	0.9300
C(16)-C(17)	1.37(2)
C(16)-H(16)	0.9300
C(17)-H(17)	0.9300
C(18)-C(19)	1.359(15)
C(18)-C(23)	1.368(17)
C(19)-C(20)	1.365(17)
C(19)-H(19)	0.9300
C(20)-C(21)	1.355(17)
C(20)-H(20)	0.9300
C(21)-C(22)	1.315(17)
C(22)-C(23)	1.359(18)
C(22)-H(22)	0.9300
C(23)-H(23)	0.9300
C(1A)-C(2A)	1.467(14)
C(2A)-C(7A)	1.360(13)

C(2A)-C(3A)	1.392(13)
C(3A)-C(4A)	1.364(17)
C(3A)-H(3A)	0.9300
C(4A)-C(5A)	1.419(17)
C(4A)-H(4A)	0.9300
C(5A)-C(6A)	1.308(16)
C(5A)-H(5A)	0.9300
C(6A)-C(7A)	1.416(15)
C(6A)-H(6A)	0.9300
C(7A)-C(8A)	1.471(13)
C(9A)-C(10A)	1.495(13)
C(9A)-C(18A)	1.516(14)
C(9A)-H(9A)	0.9800
C(10A)-C(11A)	1.511(14)
C(10A)-H(10C)	0.9700
C(10A)-H(10D)	0.9700
C(12A)-C(13A)	1.345(15)
C(12A)-C(17A)	1.363(14)
C(13A)-C(14A)	1.369(18)
C(13A)-H(13A)	0.9300
C(14A)-C(15A)	1.370(19)
C(14A)-H(14A)	0.9300
C(15A)-C(16A)	1.344(17)
C(15A)-H(15A)	0.9300
C(16A)-C(17A)	1.396(15)
C(16A)-H(16A)	0.9300
C(17A)-H(17A)	0.9300
C(18A)-C(23A)	1.346(16)
C(18A)-C(19A)	1.388(16)
C(19A)-C(20A)	1.395(17)
C(19A)-H(19A)	0.9300
C(20A)-C(21A)	1.324(18)
C(20A)-H(20A)	0.9300
C(21A)-C(22A)	1.328(19)
C(22A)-C(23A)	1.395(18)
C(22A)-H(22A)	0.9300
C(23A)-H(23A)	0.9300
C(1B)-C(2B)	1.508(16)

C(2B)-C(7B)	1.309(17)
C(2B)-C(3B)	1.400(19)
C(3B)-C(4B)	1.51(3)
C(3B)-H(3B)	0.9300
C(4B)-C(5B)	1.30(4)
C(4B)-H(4B)	0.9300
C(5B)-C(6B)	1.31(3)
C(5B)-H(5B)	0.9300
C(6B)-C(7B)	1.395(18)
C(6B)-H(6B)	0.9300
C(7B)-C(8B)	1.456(17)
C(9B)-C(18B)	1.484(13)
C(9B)-C(10B)	1.529(13)
C(9B)-H(9B)	0.9800
C(10B)-C(11B)	1.463(15)
C(10B)-H(10E)	0.9700
C(10B)-H(10F)	0.9700
C(12B)-C(13B)	1.365(15)
C(12B)-C(17B)	1.385(14)
C(13B)-C(14B)	1.352(15)
C(13B)-H(13B)	0.9300
C(14B)-C(15B)	1.357(17)
C(14B)-H(14B)	0.9300
C(15B)-C(16B)	1.382(17)
C(15B)-H(15B)	0.9300
C(16B)-C(17B)	1.339(16)
C(16B)-H(16B)	0.9300
C(17B)-H(17B)	0.9300
C(18B)-C(19B)	1.358(14)
C(18B)-C(23B)	1.364(13)
C(19B)-C(20B)	1.401(16)
C(19B)-H(19B)	0.9300
C(20B)-C(21B)	1.348(15)
C(20B)-H(20B)	0.9300
C(21B)-C(22B)	1.357(15)
C(22B)-C(23B)	1.388(15)
C(22B)-H(22B)	0.9300
C(23B)-H(23B)	0.9300

C(1C)-C(2C)	1.489(16)
C(2C)-C(3C)	1.333(15)
C(2C)-C(7C)	1.397(14)
C(3C)-C(4C)	1.377(18)
C(3C)-H(3C)	0.9300
C(4C)-C(5C)	1.360(18)
C(4C)-H(4C)	0.9300
C(5C)-C(6C)	1.381(17)
C(5C)-H(5C)	0.9300
C(6C)-C(7C)	1.344(15)
C(6C)-H(6C)	0.9300
C(7C)-C(8C)	1.457(15)
C(9C)-C(18C)	1.492(16)
C(9C)-C(10C)	1.512(18)
C(9C)-H(9C)	0.9800
C(10C)-C(11')	1.53(2)
C(10C)-C(11C)	1.54(2)
C(10C)-H(10G)	0.9567
C(10C)-H(10H)	0.9564
C(10C)-H(10X)	0.9607
C(10C)-H(10Y)	0.9611
O(3C)-C(11C)	1.25(2)
O(3C)-C(12C)	1.57(3)
O(4C)-C(11C)	1.31(2)
C(12C)-C(13C)	1.3900
C(12C)-C(17C)	1.3900
C(13C)-C(14C)	1.3900
C(13C)-H(13C)	0.9300
C(14C)-C(15C)	1.3900
C(14C)-H(14C)	0.9300
C(15C)-C(16C)	1.3900
C(15C)-H(15C)	0.9300
C(16C)-C(17C)	1.3900
C(16C)-H(16C)	0.9300
C(17C)-H(17C)	0.9300
O(3')-C(11')	1.225(19)
O(4')-C(11')	1.28(2)
O(4')-C(12')	1.44(2)

C(12')-C(13')	1.3900
C(12')-C(17')	1.3900
C(13')-C(14')	1.3900
C(13')-H(13')	0.9300
C(14')-C(15')	1.3900
C(14')-H(14')	0.9300
C(15')-C(16')	1.3900
C(15')-H(15')	0.9300
C(16')-C(17')	1.3900
C(16')-H(16')	0.9300
C(17')-H(17')	0.9300
C(18C)-C(23C)	1.321(17)
C(18C)-C(19C)	1.335(18)
C(19C)-C(20C)	1.50(2)
C(19C)-H(19C)	0.9300
C(20C)-C(21C)	1.28(2)
C(20C)-H(20C)	0.9300
C(21C)-C(22C)	1.35(2)
C(22C)-C(23C)	1.41(2)
C(22C)-H(22C)	0.9300
C(23C)-H(23C)	0.9300
C(8)-N(1)-C(1)	111.1(10)
C(8)-N(1)-C(9)	124.7(10)
C(1)-N(1)-C(9)	124.0(9)
C(8A)-N(1A)-C(1A)	112.1(8)
C(8A)-N(1A)-C(9A)	126.8(8)
C(1A)-N(1A)-C(9A)	120.6(8)
C(1B)-N(1B)-C(8B)	111.2(8)
C(1B)-N(1B)-C(9B)	127.4(8)
C(8B)-N(1B)-C(9B)	121.4(8)
C(8C)-N(1C)-C(1C)	110.9(9)
C(8C)-N(1C)-C(9C)	116.6(9)
C(1C)-N(1C)-C(9C)	131.5(10)
C(11)-O(4)-C(12)	115.8(11)
C(11A)-O(4A)-C(12A)	117.5(8)
C(11B)-O(4B)-C(12B)	117.5(8)
O(1)-C(1)-N(1)	122.0(10)

O(1)-C(1)-C(2)	131.4(12)
N(1)-C(1)-C(2)	106.5(11)
C(3)-C(2)-C(7)	121.4(12)
C(3)-C(2)-C(1)	130.3(14)
C(7)-C(2)-C(1)	108.2(10)
C(4)-C(3)-C(2)	118.7(15)
C(4)-C(3)-H(3)	120.6
C(2)-C(3)-H(3)	120.7
C(3)-C(4)-C(5)	121.8(15)
C(3)-C(4)-H(4)	119.1
C(5)-C(4)-H(4)	119.1
C(4)-C(5)-C(6)	119.7(14)
C(4)-C(5)-H(5)	120.1
C(6)-C(5)-H(5)	120.1
C(7)-C(6)-C(5)	117.1(15)
C(7)-C(6)-H(6)	121.4
C(5)-C(6)-H(6)	121.4
C(6)-C(7)-C(2)	120.8(12)
C(6)-C(7)-C(8)	131.8(13)
C(2)-C(7)-C(8)	107.1(10)
O(2)-C(8)-N(1)	127.1(10)
O(2)-C(8)-C(7)	125.9(11)
N(1)-C(8)-C(7)	106.9(11)
N(1)-C(9)-C(10)	112.9(9)
N(1)-C(9)-C(18)	111.4(8)
C(10)-C(9)-C(18)	115.1(9)
N(1)-C(9)-H(9)	105.5
C(10)-C(9)-H(9)	105.5
C(18)-C(9)-H(9)	105.5
C(9)-C(10)-C(11)	115.9(10)
C(9)-C(10)-H(10A)	108.3
C(11)-C(10)-H(10A)	108.3
C(9)-C(10)-H(10B)	108.3
C(11)-C(10)-H(10B)	108.3
H(10A)-C(10)-H(10B)	107.4
O(3)-C(11)-O(4)	126.6(13)
O(3)-C(11)-C(10)	119.3(13)
O(4)-C(11)-C(10)	114.1(13)

C(13)-C(12)-C(17)	121.0(14)
C(13)-C(12)-O(4)	122.6(13)
C(17)-C(12)-O(4)	116.2(13)
C(12)-C(13)-C(14)	119.6(12)
C(12)-C(13)-H(13)	120.2
C(14)-C(13)-H(13)	120.2
C(15)-C(14)-C(13)	121.7(15)
C(15)-C(14)-H(14)	119.1
C(13)-C(14)-H(14)	119.1
C(14)-C(15)-C(16)	118.2(17)
C(14)-C(15)-H(15)	120.9
C(16)-C(15)-H(15)	120.9
C(17)-C(16)-C(15)	121.3(16)
C(17)-C(16)-H(16)	119.3
C(15)-C(16)-H(16)	119.3
C(16)-C(17)-C(12)	118.1(15)
C(16)-C(17)-H(17)	120.9
C(12)-C(17)-H(17)	120.9
C(19)-C(18)-C(23)	117.9(12)
C(19)-C(18)-C(9)	119.4(11)
C(23)-C(18)-C(9)	122.7(11)
C(18)-C(19)-C(20)	119.7(12)
C(18)-C(19)-H(19)	120.2
C(20)-C(19)-H(19)	120.2
C(21)-C(20)-C(19)	121.6(12)
C(21)-C(20)-H(20)	119.2
C(19)-C(20)-H(20)	119.2
C(22)-C(21)-C(20)	118.5(12)
C(22)-C(21)-Cl(1)	122.5(11)
C(20)-C(21)-Cl(1)	118.8(11)
C(21)-C(22)-C(23)	121.4(13)
C(21)-C(22)-H(22)	119.3
C(23)-C(22)-H(22)	119.3
C(22)-C(23)-C(18)	120.7(13)
C(22)-C(23)-H(23)	119.7
C(18)-C(23)-H(23)	119.7
O(1A)-C(1A)-N(1A)	125.0(10)
O(1A)-C(1A)-C(2A)	129.8(9)

N(1A)-C(1A)-C(2A)	105.2(9)
C(7A)-C(2A)-C(3A)	121.9(10)
C(7A)-C(2A)-C(1A)	108.8(8)
C(3A)-C(2A)-C(1A)	129.4(10)
C(4A)-C(3A)-C(2A)	115.6(11)
C(4A)-C(3A)-H(3A)	122.2
C(2A)-C(3A)-H(3A)	122.2
C(3A)-C(4A)-C(5A)	123.9(11)
C(3A)-C(4A)-H(4A)	118.0
C(5A)-C(4A)-H(4A)	118.0
C(6A)-C(5A)-C(4A)	118.0(11)
C(6A)-C(5A)-H(5A)	121.0
C(4A)-C(5A)-H(5A)	121.0
C(5A)-C(6A)-C(7A)	120.8(11)
C(5A)-C(6A)-H(6A)	119.6
C(7A)-C(6A)-H(6A)	119.6
C(2A)-C(7A)-C(6A)	119.6(9)
C(2A)-C(7A)-C(8A)	109.0(8)
C(6A)-C(7A)-C(8A)	131.3(9)
O(2A)-C(8A)-N(1A)	125.7(9)
O(2A)-C(8A)-C(7A)	129.3(9)
N(1A)-C(8A)-C(7A)	105.0(8)
N(1A)-C(9A)-C(10A)	110.4(8)
N(1A)-C(9A)-C(18A)	110.4(8)
C(10A)-C(9A)-C(18A)	114.7(8)
N(1A)-C(9A)-H(9A)	107.0
C(10A)-C(9A)-H(9A)	107.0
C(18A)-C(9A)-H(9A)	107.0
C(9A)-C(10A)-C(11A)	112.0(8)
C(9A)-C(10A)-H(10C)	109.2
C(11A)-C(10A)-H(10C)	109.2
C(9A)-C(10A)-H(10D)	109.2
C(11A)-C(10A)-H(10D)	109.2
H(10C)-C(10A)-H(10D)	107.9
O(3A)-C(11A)-O(4A)	124.3(10)
O(3A)-C(11A)-C(10A)	123.0(10)
O(4A)-C(11A)-C(10A)	112.3(9)
C(13A)-C(12A)-C(17A)	122.2(11)

C(13A)-C(12A)-O(4A)	118.2(11)
C(17A)-C(12A)-O(4A)	119.5(10)
C(12A)-C(13A)-C(14A)	119.5(13)
C(12A)-C(13A)-H(13A)	120.2
C(14A)-C(13A)-H(13A)	120.2
C(15A)-C(14A)-C(13A)	119.6(13)
C(15A)-C(14A)-H(14A)	120.2
C(13A)-C(14A)-H(14A)	120.2
C(16A)-C(15A)-C(14A)	120.5(12)
C(16A)-C(15A)-H(15A)	119.8
C(14A)-C(15A)-H(15A)	119.8
C(15A)-C(16A)-C(17A)	120.5(12)
C(15A)-C(16A)-H(16A)	119.7
C(17A)-C(16A)-H(16A)	119.7
C(12A)-C(17A)-C(16A)	117.5(11)
C(12A)-C(17A)-H(17A)	121.3
C(16A)-C(17A)-H(17A)	121.2
C(23A)-C(18A)-C(19A)	115.9(11)
C(23A)-C(18A)-C(9A)	124.5(10)
C(19A)-C(18A)-C(9A)	119.5(10)
C(18A)-C(19A)-C(20A)	123.0(12)
C(18A)-C(19A)-H(19A)	118.5
C(20A)-C(19A)-H(19A)	118.5
C(21A)-C(20A)-C(19A)	117.4(12)
C(21A)-C(20A)-H(20A)	121.3
C(19A)-C(20A)-H(20A)	121.3
C(20A)-C(21A)-C(22A)	122.2(13)
C(20A)-C(21A)-Cl(1A)	119.0(12)
C(22A)-C(21A)-Cl(1A)	118.8(14)
C(21A)-C(22A)-C(23A)	120.2(14)
C(21A)-C(22A)-H(22A)	119.9
C(23A)-C(22A)-H(22A)	119.9
C(18A)-C(23A)-C(22A)	121.2(12)
C(18A)-C(23A)-H(23A)	119.4
C(22A)-C(23A)-H(23A)	119.4
O(1B)-C(1B)-N(1B)	124.5(10)
O(1B)-C(1B)-C(2B)	131.0(12)
N(1B)-C(1B)-C(2B)	104.5(10)

C(7B)-C(2B)-C(3B)	123.8(15)
C(7B)-C(2B)-C(1B)	108.5(10)
C(3B)-C(2B)-C(1B)	127.7(16)
C(2B)-C(3B)-C(4B)	110.8(19)
C(2B)-C(3B)-H(3B)	124.6
C(4B)-C(3B)-H(3B)	124.6
C(5B)-C(4B)-C(3B)	122.4(19)
C(5B)-C(4B)-H(4B)	118.8
C(3B)-C(4B)-H(4B)	118.8
C(4B)-C(5B)-C(6B)	123(2)
C(4B)-C(5B)-H(5B)	118.6
C(6B)-C(5B)-H(5B)	118.6
C(5B)-C(6B)-C(7B)	118(2)
C(5B)-C(6B)-H(6B)	120.8
C(7B)-C(6B)-H(6B)	120.8
C(2B)-C(7B)-C(6B)	121.7(14)
C(2B)-C(7B)-C(8B)	110.6(11)
C(6B)-C(7B)-C(8B)	127.6(16)
O(2B)-C(8B)-N(1B)	124.8(10)
O(2B)-C(8B)-C(7B)	129.9(12)
N(1B)-C(8B)-C(7B)	105.2(11)
N(1B)-C(9B)-C(18B)	112.1(7)
N(1B)-C(9B)-C(10B)	111.2(8)
C(18B)-C(9B)-C(10B)	115.7(8)
N(1B)-C(9B)-H(9B)	105.6
C(18B)-C(9B)-H(9B)	105.6
C(10B)-C(9B)-H(9B)	105.6
C(11B)-C(10B)-C(9B)	112.4(8)
C(11B)-C(10B)-H(10E)	109.1
C(9B)-C(10B)-H(10E)	109.1
C(11B)-C(10B)-H(10F)	109.1
C(9B)-C(10B)-H(10F)	109.1
H(10E)-C(10B)-H(10F)	107.9
O(3B)-C(11B)-O(4B)	119.8(9)
O(3B)-C(11B)-C(10B)	126.0(12)
O(4B)-C(11B)-C(10B)	114.2(11)
C(13B)-C(12B)-C(17B)	120.6(11)
C(13B)-C(12B)-O(4B)	121.1(9)

C(17B)-C(12B)-O(4B)	118.3(10)
C(14B)-C(13B)-C(12B)	119.0(11)
C(14B)-C(13B)-H(13B)	120.5
C(12B)-C(13B)-H(13B)	120.5
C(13B)-C(14B)-C(15B)	122.0(12)
C(13B)-C(14B)-H(14B)	119.0
C(15B)-C(14B)-H(14B)	119.0
C(14B)-C(15B)-C(16B)	117.9(12)
C(14B)-C(15B)-H(15B)	121.0
C(16B)-C(15B)-H(15B)	121.0
C(17B)-C(16B)-C(15B)	121.9(11)
C(17B)-C(16B)-H(16B)	119.0
C(15B)-C(16B)-H(16B)	119.0
C(16B)-C(17B)-C(12B)	118.6(11)
C(16B)-C(17B)-H(17B)	120.7
C(12B)-C(17B)-H(17B)	120.7
C(19B)-C(18B)-C(23B)	116.5(10)
C(19B)-C(18B)-C(9B)	120.8(9)
C(23B)-C(18B)-C(9B)	122.5(9)
C(18B)-C(19B)-C(20B)	123.3(10)
C(18B)-C(19B)-H(19B)	118.4
C(20B)-C(19B)-H(19B)	118.4
C(21B)-C(20B)-C(19B)	117.5(10)
C(21B)-C(20B)-H(20B)	121.2
C(19B)-C(20B)-H(20B)	121.2
C(20B)-C(21B)-C(22B)	121.4(11)
C(20B)-C(21B)-Cl(1B)	116.4(10)
C(22B)-C(21B)-Cl(1B)	122.2(9)
C(21B)-C(22B)-C(23B)	119.2(11)
C(21B)-C(22B)-H(22B)	120.4
C(23B)-C(22B)-H(22B)	120.4
C(18B)-C(23B)-C(22B)	121.9(11)
C(18B)-C(23B)-H(23B)	119.1
C(22B)-C(23B)-H(23B)	119.1
O(1C)-C(1C)-N(1C)	124.7(12)
O(1C)-C(1C)-C(2C)	128.9(12)
N(1C)-C(1C)-C(2C)	106.3(10)
C(3C)-C(2C)-C(7C)	121.1(11)

C(3C)-C(2C)-C(1C)	132.0(11)
C(7C)-C(2C)-C(1C)	106.9(9)
C(2C)-C(3C)-C(4C)	117.5(13)
C(2C)-C(3C)-H(3C)	121.3
C(4C)-C(3C)-H(3C)	121.3
C(5C)-C(4C)-C(3C)	122.8(13)
C(5C)-C(4C)-H(4C)	118.6
C(3C)-C(4C)-H(4C)	118.6
C(4C)-C(5C)-C(6C)	118.7(12)
C(4C)-C(5C)-H(5C)	120.6
C(6C)-C(5C)-H(5C)	120.6
C(7C)-C(6C)-C(5C)	119.1(12)
C(7C)-C(6C)-H(6C)	120.4
C(5C)-C(6C)-H(6C)	120.4
C(6C)-C(7C)-C(2C)	120.7(10)
C(6C)-C(7C)-C(8C)	129.6(11)
C(2C)-C(7C)-C(8C)	109.7(10)
O(2C)-C(8C)-N(1C)	124.1(11)
O(2C)-C(8C)-C(7C)	129.7(12)
N(1C)-C(8C)-C(7C)	106.1(10)
N(1C)-C(9C)-C(18C)	114.0(10)
N(1C)-C(9C)-C(10C)	110.1(11)
C(18C)-C(9C)-C(10C)	109.6(11)
N(1C)-C(9C)-H(9C)	107.6
C(18C)-C(9C)-H(9C)	107.6
C(10C)-C(9C)-H(9C)	107.6
C(9C)-C(10C)-C(11')	113.7(16)
C(9C)-C(10C)-C(11C)	111(2)
C(9C)-C(10C)-H(10G)	107.5
C(11C)-C(10C)-H(10G)	107.4
C(9C)-C(10C)-H(10H)	109.1
C(11C)-C(10C)-H(10H)	111.1
H(10G)-C(10C)-H(10H)	110.6
C(9C)-C(10C)-H(10X)	109.2
C(11')-C(10C)-H(10X)	109.6
C(9C)-C(10C)-H(10Y)	108.3
C(11')-C(10C)-H(10Y)	106.8
H(10X)-C(10C)-H(10Y)	109.1

C(11C)-O(3C)-C(12C)	100(2)
O(3C)-C(11C)-O(4C)	119(3)
O(3C)-C(11C)-C(10C)	111(2)
O(4C)-C(11C)-C(10C)	127(3)
C(13C)-C(12C)-C(17C)	120.0
C(13C)-C(12C)-O(3C)	89(2)
C(17C)-C(12C)-O(3C)	141(2)
C(12C)-C(13C)-C(14C)	120.0
С(12С)-С(13С)-Н(13С)	120.0
C(14C)-C(13C)-H(13C)	120.0
C(15C)-C(14C)-C(13C)	120.0
C(15C)-C(14C)-H(14C)	120.0
C(13C)-C(14C)-H(14C)	120.0
C(14C)-C(15C)-C(16C)	120.0
C(14C)-C(15C)-H(15C)	120.0
C(16C)-C(15C)-H(15C)	120.0
C(15C)-C(16C)-C(17C)	120.0
C(15C)-C(16C)-H(16C)	120.0
C(17C)-C(16C)-H(16C)	120.0
C(16C)-C(17C)-C(12C)	120.0
C(16C)-C(17C)-H(17C)	120.0
C(12C)-C(17C)-H(17C)	120.0
C(11')-O(4')-C(12')	105.5(16)
O(3')-C(11')-O(4')	124(2)
O(3')-C(11')-C(10C)	124.0(19)
O(4')-C(11')-C(10C)	112.1(17)
C(13')-C(12')-C(17')	120.0
C(13')-C(12')-O(4')	118.5(13)
C(17')-C(12')-O(4')	119.1(14)
C(12')-C(13')-C(14')	120.0
C(12')-C(13')-H(13')	120.0
C(14')-C(13')-H(13')	120.0
C(15')-C(14')-C(13')	120.0
C(15')-C(14')-H(14')	120.0
C(13')-C(14')-H(14')	120.0
C(14')-C(15')-C(16')	120.0
C(14')-C(15')-H(15')	120.0
C(16')-C(15')-H(15')	120.0

C(17')-C(16')-C(15')	120.0
C(17')-C(16')-H(16')	120.0
C(15')-C(16')-H(16')	120.0
C(16')-C(17')-C(12')	120.0
C(16')-C(17')-H(17')	120.0
C(12')-C(17')-H(17')	120.0
C(23C)-C(18C)-C(19C)	120.0(13)
C(23C)-C(18C)-C(9C)	114.5(12)
C(19C)-C(18C)-C(9C)	125.5(12)
C(18C)-C(19C)-C(20C)	117.3(13)
C(18C)-C(19C)-H(19C)	121.4
C(20C)-C(19C)-H(19C)	121.4
C(21C)-C(20C)-C(19C)	118.2(15)
C(21C)-C(20C)-H(20C)	120.9
C(19C)-C(20C)-H(20C)	120.9
C(20C)-C(21C)-C(22C)	125.6(17)
C(20C)-C(21C)-Cl(1C)	115.0(17)
C(22C)-C(21C)-Cl(1C)	119.4(15)
C(21C)-C(22C)-C(23C)	114.1(17)
C(21C)-C(22C)-H(22C)	123.0
C(23C)-C(22C)-H(22C)	123.0
C(18C)-C(23C)-C(22C)	124.5(15)
C(18C)-C(23C)-H(23C)	117.7
C(22C)-C(23C)-H(23C)	117.7

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Cl(1)	156(3)	112(3)	123(3)	-31(2)	33(2)	-59(2)
Cl(1A)	182(4)	144(3)	113(3)	-20(2)	61(3)	-46(3)
Cl(1B)	120(2)	126(3)	91(2)	-26(2)	23(2)	-56(2)
Cl(1C)	325(7)	168(4)	104(3)	-57(3)	81(4)	-123(5)
N(1)	87(6)	83(6)	91(6)	-42(5)	4(5)	-28(5)
N(1A)	58(5)	74(5)	74(5)	-31(4)	9(4)	-18(4)
N(1B)	42(4)	73(5)	80(5)	-32(4)	1(3)	-20(3)
N(1C)	79(6)	115(7)	100(7)	-63(6)	9(5)	-20(5)
O(1)	92(6)	141(7)	216(11)	-122(8)	19(6)	-43(5)
O(2)	90(5)	156(8)	158(8)	-104(7)	25(5)	-44(5)
O(3)	121(6)	109(6)	100(6)	-41(5)	29(5)	-44(5)
O(4)	141(7)	114(7)	93(6)	-41(6)	0(5)	-58(6)
O(1A)	64(4)	113(6)	124(6)	-68(5)	-2(4)	-23(4)
O(2A)	52(4)	116(6)	107(5)	-49(4)	0(3)	-21(4)
O(3A)	82(5)	83(5)	142(7)	3(5)	24(5)	-13(4)
O(4A)	77(4)	83(5)	83(5)	-20(4)	15(4)	-20(4)
O(1B)	129(7)	135(7)	154(8)	-102(7)	39(6)	-59(6)
O(2B)	75(5)	131(7)	124(7)	-70(6)	16(4)	-21(4)
O(3B)	94(5)	103(6)	95(5)	-47(5)	18(4)	-41(5)
O(4B)	83(4)	78(5)	90(5)	-26(4)	7(4)	-31(4)
O(1C)	125(7)	223(11)	155(8)	-129(8)	17(6)	-90(7)
O(2C)	65(5)	208(11)	152(8)	-96(8)	-8(5)	-26(6)
C(1)	85(8)	94(8)	126(10)	-64(8)	5(7)	-27(7)
C(2)	73(7)	105(9)	123(10)	-41(8)	-14(7)	-41(7)
C(3)	81(9)	130(11)	171(14)	-68(10)	5(8)	-43(8)
C(4)	106(12)	154(14)	169(15)	-56(12)	13(10)	-75(11)
C(5)	78(9)	190(17)	153(14)	-65(13)	40(9)	-54(11)
C(6)	76(8)	168(12)	121(10)	-73(9)	17(7)	-57(8)
C(7)	73(8)	120(9)	89(8)	-44(7)	11(6)	-44(7)
C(8)	73(7)	113(9)	91(8)	-54(7)	17(5)	-37(7)
C(9)	64(6)	91(7)	113(9)	-32(7)	-11(5)	-37(6)
C(10)	95(8)	120(9)	95(8)	-30(7)	-14(6)	-59(7)
C(11)	95(8)	111(10)	102(10)	-46(9)	12(7)	-51(7)

Table S4. Anisotropic displacement parameters (Å²x 10³) for **2b**. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

C(12)	110(10)	82(8)	101(9)	-32(8)	-4(8)	-38(8)
C(13)	84(7)	86(8)	96(9)	-33(8)	0(7)	-15(7)
C(14)	115(11)	95(9)	117(11)	-44(9)	10(9)	-24(8)
C(15)	168(17)	185(18)	148(14)	-124(15)	84(13)	-105(15)
C(16)	97(11)	160(16)	200(20)	-120(16)	29(12)	-40(12)
C(17)	93(10)	119(11)	165(15)	-85(11)	16(9)	-27(9)
C(18)	61(6)	87(8)	92(8)	-41(7)	9(5)	-20(5)
C(19)	90(8)	87(8)	116(10)	-49(8)	-1(7)	-25(6)
C(20)	101(8)	115(11)	98(9)	-51(8)	22(7)	-40(8)
C(21)	85(7)	93(9)	102(9)	-43(7)	10(6)	-30(6)
C(22)	235(19)	82(9)	143(13)	-61(10)	83(13)	-66(11)
C(23)	185(15)	104(11)	142(13)	-72(10)	76(11)	-59(10)
C(1A)	63(6)	76(6)	83(7)	-30(6)	7(5)	-25(5)
C(2A)	72(7)	67(6)	70(6)	-25(5)	14(5)	-24(5)
C(3A)	70(7)	95(8)	87(7)	-48(7)	21(5)	-19(6)
C(4A)	96(9)	100(8)	98(9)	-40(7)	40(7)	-33(7)
C(5A)	130(11)	115(9)	74(7)	-51(7)	27(7)	-40(8)
C(6A)	89(8)	108(9)	86(8)	-48(7)	-3(6)	-25(7)
C(7A)	73(6)	66(6)	64(6)	-27(5)	4(5)	-15(5)
C(8A)	62(6)	73(6)	66(6)	-22(5)	3(5)	-24(5)
C(9A)	63(5)	68(6)	84(7)	-38(6)	13(5)	-16(5)
C(10A)	76(6)	80(7)	93(8)	-35(6)	26(6)	-27(6)
C(11A)	73(7)	66(7)	110(9)	-27(6)	14(7)	-11(6)
C(12A)	72(6)	81(7)	88(8)	-40(6)	0(5)	-15(6)
C(13A)	143(11)	154(12)	106(10)	-66(10)	16(8)	-90(10)
C(14A)	181(15)	164(14)	79(9)	-53(10)	31(9)	-89(13)
C(15A)	118(10)	111(10)	73(8)	-20(7)	11(6)	-42(8)
C(16A)	83(7)	83(8)	120(11)	-41(8)	10(7)	-23(6)
C(17A)	97(7)	92(8)	75(7)	-33(6)	5(6)	-32(6)
C(18A)	78(7)	79(7)	70(7)	-29(6)	6(5)	-22(6)
C(19A)	77(7)	93(8)	106(10)	-38(8)	12(7)	-14(6)
C(20A)	111(11)	117(11)	85(9)	-20(8)	-8(8)	-14(9)
C(21A)	134(12)	102(9)	73(8)	-25(7)	32(8)	-14(9)
C(22A)	130(12)	185(15)	95(10)	-26(11)	16(9)	-90(11)
C(23A)	104(9)	162(13)	83(8)	-30(8)	10(7)	-67(9)
C(1B)	88(8)	110(9)	91(8)	-59(7)	25(6)	-50(7)
C(2B)	109(9)	150(11)	86(8)	-50(8)	16(7)	-90(9)
C(3B)	250(20)	320(30)	150(14)	-142(17)	70(14)	-220(20)

C(4B)	260(30)	480(50)	160(20)	-150(20)	59(17)	-310(30)
C(5B)	162(19)	460(50)	103(14)	-90(20)	24(12)	-190(30)
C(6B)	103(10)	290(20)	97(10)	-79(12)	23(7)	-117(12)
C(7B)	79(8)	164(12)	82(8)	-50(8)	9(6)	-64(8)
C(8B)	70(7)	102(8)	77(7)	-29(6)	5(5)	-39(6)
C(9B)	70(6)	75(6)	78(6)	-38(5)	5(5)	-23(5)
C(10B)	58(5)	88(7)	98(8)	-32(6)	1(5)	-24(5)
C(11B)	58(6)	87(8)	70(7)	-24(6)	6(5)	-22(5)
C(12B)	77(7)	76(7)	100(8)	-47(7)	18(6)	-30(6)
C(13B)	74(6)	73(7)	86(8)	-28(6)	3(6)	-14(6)
C(14B)	110(10)	99(9)	88(8)	-47(7)	21(7)	-36(8)
C(15B)	111(10)	102(9)	91(8)	-43(8)	26(7)	-54(8)
C(16B)	77(7)	122(10)	110(10)	-56(9)	25(7)	-30(8)
C(17B)	70(7)	83(7)	99(8)	-34(6)	6(6)	-17(6)
C(18B)	53(5)	68(6)	78(6)	-40(5)	7(5)	-23(5)
C(19B)	98(8)	96(9)	80(8)	-37(7)	23(6)	-25(7)
C(20B)	90(8)	75(7)	104(9)	-40(7)	1(7)	-6(6)
C(21B)	73(6)	92(8)	70(6)	-30(6)	13(5)	-32(6)
C(22B)	85(7)	97(9)	119(10)	-63(8)	30(7)	-32(7)
C(23B)	92(7)	84(7)	104(9)	-48(7)	24(6)	-40(6)
C(1C)	98(9)	122(10)	120(10)	-71(8)	19(8)	-51(8)
C(2C)	57(6)	92(7)	102(8)	-49(6)	14(5)	-26(5)
C(3C)	94(9)	132(11)	129(11)	-60(10)	29(8)	-50(8)
C(4C)	127(12)	101(9)	86(9)	-37(8)	33(8)	-31(8)
C(5C)	146(12)	75(7)	81(8)	-37(6)	14(8)	-28(8)
C(6C)	115(10)	89(8)	70(7)	-25(6)	-3(6)	-32(7)
C(7C)	79(7)	87(7)	65(6)	-32(6)	12(5)	-28(6)
C(8C)	85(8)	120(9)	90(8)	-54(7)	2(6)	-25(7)
C(9C)	112(9)	113(10)	105(10)	-51(8)	40(7)	-42(8)
C(10C)	240(20)	80(9)	130(12)	-39(9)	32(12)	-57(11)
O(3C)	219(14)	160(11)	124(9)	-29(8)	5(9)	-45(10)
O(4C)	239(17)	184(14)	163(13)	-9(12)	-1(13)	-36(13)
C(11C)	222(15)	165(12)	134(10)	-24(9)	1(10)	-46(11)
C(12C)	214(14)	150(10)	115(9)	-40(8)	3(9)	-50(9)
C(13C)	211(14)	143(11)	109(9)	-46(8)	2(9)	-52(9)
C(14C)	210(14)	141(11)	104(9)	-49(8)	2(9)	-54(10)
C(15C)	210(14)	138(11)	97(9)	-52(8)	1(9)	-57(10)
C(16C)	213(14)	146(11)	104(9)	-47(8)	0(9)	-54(10)

C(17C)	214(14)	148(11)	111(9)	-44(8)	1(9)	-53(9)
O(3')	147(10)	93(9)	147(11)	-19(8)	71(9)	-32(8)
O(4')	98(7)	96(6)	105(7)	-47(6)	29(6)	-38(5)
C(11')	108(8)	92(7)	113(8)	-44(7)	40(7)	-39(6)
C(12')	98(6)	100(6)	105(7)	-48(6)	18(6)	-40(5)
C(13')	99(7)	97(7)	106(7)	-51(6)	20(6)	-38(6)
C(14')	104(7)	101(7)	106(8)	-47(7)	23(7)	-35(6)
C(15')	106(7)	109(7)	104(8)	-42(7)	19(7)	-33(6)
C(16')	103(7)	107(7)	102(7)	-50(7)	13(6)	-33(6)
C(17')	99(7)	103(7)	102(7)	-51(6)	13(6)	-36(6)
C(18C)	90(8)	91(8)	81(8)	-37(7)	22(7)	-23(6)
C(19C)	107(10)	166(14)	136(13)	-55(12)	11(10)	-45(10)
C(20C)	166(15)	139(13)	66(8)	-22(8)	-6(8)	-32(11)
C(21C)	146(14)	144(13)	139(14)	-87(12)	79(13)	-80(12)
C(22C)	148(16)	142(14)	154(17)	-38(13)	13(14)	-36(12)
C(23C)	86(9)	149(13)	102(10)	-15(10)	19(7)	-4(8)
	X	у	Z	U(eq)		
--------	-------	-------	-------	-------		
H(3)	10810	10973	9533	148		
H(4)	13019	10405	9409	167		
H(5)	13998	8900	9112	170		
H(6)	12621	8191	8565	136		
H(9)	6721	10170	8634	108		
H(10A)	6065	9744	7525	123		
H(10B)	7507	8940	7589	123		
H(13)	5922	12391	4798	113		
H(14)	6606	13570	3503	135		
H(15)	8780	13211	3282	166		
H(16)	10327	11532	4294	167		
H(17)	9661	10312	5561	143		
H(19)	6092	9428	10125	116		
H(20)	5711	8016	11369	122		
H(22)	7282	6041	10170	177		
H(23)	7875	7371	8993	163		
H(3A)	13253	7484	2253	100		
H(4A)	13003	6885	1124	119		
H(5A)	10928	6920	622	124		
H(6A)	9075	7759	1124	112		
H(9A)	9855	9578	3914	85		
H(10C)	7721	10901	3455	100		
H(10D)	7388	10398	2799	100		
H(13A)	7736	12232	7	144		
H(14A)	8490	13305	-1320	160		
H(15A)	9366	14544	-1230	128		
H(16A)	9600	14648	173	117		
H(17A)	8972	13479	1547	107		
H(19A)	10311	8154	5430	117		
H(20A)	9612	7115	6824	142		
H(22A)	6111	7993	5412	167		
H(23A)	6777	9058	4023	142		

Table S5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for **2b**.

H(3B)	1589	2091	5850	227
H(4B)	-858	2531	5968	297
H(5B)	-1891	3545	6698	272
H(6B)	-900	4469	7140	184
H(9B)	3925	4449	7518	87
H(10E)	5834	2611	7413	101
H(10F)	6026	3204	8029	101
H(13B)	5999	834	10854	99
H(14B)	5140	-229	12084	116
H(15B)	2873	175	12119	116
H(16B)	1448	1706	10878	122
H(17B)	2262	2787	9641	106
H(19B)	3443	6152	6283	112
H(20B)	3974	7364	4902	114
H(22B)	6433	4827	4527	114
H(23B)	5824	3650	5875	106
H(3C)	-1302	5454	3287	137
H(4C)	-1394	6179	4379	130
H(5C)	490	6175	5050	122
H(6C)	2552	5508	4559	113
H(9C)	4356	3496	2510	130
H(10G)	2253	2861	2238	183
H(10H)	3615	2434	1859	183
H(10X)	3946	2225	2142	183
H(10Y)	2405	2885	1915	183
H(13C)	2444	-7	3989	190
H(14C)	2159	-1364	5376	185
H(15C)	3277	-1788	6822	177
H(16C)	4680	-856	6880	190
H(17C)	4964	501	5492	196
H(13')	2834	-530	4327	116
H(14')	2765	-1688	5890	123
H(15')	3274	-1312	7130	130
H(16')	3852	224	6808	124
H(17')	3921	1383	5246	119
H(19C)	1606	4934	616	168
H(20C)	2047	5860	-1034	163
H(22C)	5875	4950	-146	192

H(23C)	5455	3898	1388	163

Table S6.Torsion angles [°] for 2b.

C(8)-N(1)-C(1)-O(1)	179.5(13)
C(9)-N(1)-C(1)-O(1)	3.6(19)
C(8)-N(1)-C(1)-C(2)	2.5(13)
C(9)-N(1)-C(1)-C(2)	-173.4(10)
O(1)-C(1)-C(2)-C(3)	5(3)
N(1)-C(1)-C(2)-C(3)	-178.7(15)
O(1)-C(1)-C(2)-C(7)	-178.3(15)
N(1)-C(1)-C(2)-C(7)	-1.7(14)
C(7)-C(2)-C(3)-C(4)	0(2)
C(1)-C(2)-C(3)-C(4)	176.7(14)
C(2)-C(3)-C(4)-C(5)	-5(3)
C(3)-C(4)-C(5)-C(6)	8(3)
C(4)-C(5)-C(6)-C(7)	-5(2)
C(5)-C(6)-C(7)-C(2)	0(2)
C(5)-C(6)-C(7)-C(8)	-173.8(13)
C(3)-C(2)-C(7)-C(6)	3(2)
C(1)-C(2)-C(7)-C(6)	-174.6(11)
C(3)-C(2)-C(7)-C(8)	177.6(13)
C(1)-C(2)-C(7)-C(8)	0.3(13)
C(1)-N(1)-C(8)-O(2)	-178.9(13)
C(9)-N(1)-C(8)-O(2)	-3.0(19)
C(1)-N(1)-C(8)-C(7)	-2.3(12)
C(9)-N(1)-C(8)-C(7)	173.6(9)
C(6)-C(7)-C(8)-O(2)	-8(2)
C(2)-C(7)-C(8)-O(2)	177.8(13)
C(6)-C(7)-C(8)-N(1)	175.4(13)
C(2)-C(7)-C(8)-N(1)	1.2(13)
C(8)-N(1)-C(9)-C(10)	-49.9(14)
C(1)-N(1)-C(9)-C(10)	125.5(12)
C(8)-N(1)-C(9)-C(18)	81.5(13)
C(1)-N(1)-C(9)-C(18)	-103.1(12)
N(1)-C(9)-C(10)-C(11)	-49.5(14)
C(18)-C(9)-C(10)-C(11)	-179.0(10)
C(12)-O(4)-C(11)-O(3)	3.9(19)
C(12)-O(4)-C(11)-C(10)	-176.5(10)
C(9)-C(10)-C(11)-O(3)	-15.8(16)

C(9)-C(10)-C(11)-O(4)	164.6(11)
C(11)-O(4)-C(12)-C(13)	-90.2(14)
C(11)-O(4)-C(12)-C(17)	94.2(14)
C(17)-C(12)-C(13)-C(14)	0.2(19)
O(4)-C(12)-C(13)-C(14)	-175.1(11)
C(12)-C(13)-C(14)-C(15)	-2(2)
C(13)-C(14)-C(15)-C(16)	3(2)
C(14)-C(15)-C(16)-C(17)	-2(2)
C(15)-C(16)-C(17)-C(12)	0(2)
C(13)-C(12)-C(17)-C(16)	1(2)
O(4)-C(12)-C(17)-C(16)	176.6(12)
N(1)-C(9)-C(18)-C(19)	94.9(12)
C(10)-C(9)-C(18)-C(19)	-134.9(11)
N(1)-C(9)-C(18)-C(23)	-82.9(15)
C(10)-C(9)-C(18)-C(23)	47.4(15)
C(23)-C(18)-C(19)-C(20)	0.4(17)
C(9)-C(18)-C(19)-C(20)	-177.4(10)
C(18)-C(19)-C(20)-C(21)	-0.7(18)
C(19)-C(20)-C(21)-C(22)	-2(2)
C(19)-C(20)-C(21)-Cl(1)	-178.3(9)
C(20)-C(21)-C(22)-C(23)	6(3)
Cl(1)-C(21)-C(22)-C(23)	-178.5(14)
C(21)-C(22)-C(23)-C(18)	-6(3)
C(19)-C(18)-C(23)-C(22)	3(2)
C(9)-C(18)-C(23)-C(22)	-179.3(15)
C(8A)-N(1A)-C(1A)-O(1A)	-179.0(10)
C(9A)-N(1A)-C(1A)-O(1A)	8.7(14)
C(8A)-N(1A)-C(1A)-C(2A)	-0.6(10)
C(9A)-N(1A)-C(1A)-C(2A)	-172.9(8)
O(1A)-C(1A)-C(2A)-C(7A)	177.9(11)
N(1A)-C(1A)-C(2A)-C(7A)	-0.5(10)
O(1A)-C(1A)-C(2A)-C(3A)	-0.4(18)
N(1A)-C(1A)-C(2A)-C(3A)	-178.7(9)
C(7A)-C(2A)-C(3A)-C(4A)	1.3(15)
C(1A)-C(2A)-C(3A)-C(4A)	179.3(10)
C(2A)-C(3A)-C(4A)-C(5A)	-2.4(17)
C(3A)-C(4A)-C(5A)-C(6A)	3.8(19)
C(4A)-C(5A)-C(6A)-C(7A)	-3.7(18)

C(3A)-C(2A)-C(7A)-C(6A)	-1.4(14)
C(1A)-C(2A)-C(7A)-C(6A)	-179.8(9)
C(3A)-C(2A)-C(7A)-C(8A)	179.7(9)
C(1A)-C(2A)-C(7A)-C(8A)	1.3(11)
C(5A)-C(6A)-C(7A)-C(2A)	2.7(16)
C(5A)-C(6A)-C(7A)-C(8A)	-178.7(11)
C(1A)-N(1A)-C(8A)-O(2A)	-179.9(9)
C(9A)-N(1A)-C(8A)-O(2A)	-8.2(15)
C(1A)-N(1A)-C(8A)-C(7A)	1.3(10)
C(9A)-N(1A)-C(8A)-C(7A)	173.0(8)
C(2A)-C(7A)-C(8A)-O(2A)	179.6(10)
C(6A)-C(7A)-C(8A)-O(2A)	0.9(18)
C(2A)-C(7A)-C(8A)-N(1A)	-1.6(10)
C(6A)-C(7A)-C(8A)-N(1A)	179.6(10)
C(8A)-N(1A)-C(9A)-C(10A)	-50.2(12)
C(1A)-N(1A)-C(9A)-C(10A)	120.8(9)
C(8A)-N(1A)-C(9A)-C(18A)	77.6(11)
C(1A)-N(1A)-C(9A)-C(18A)	-111.3(9)
N(1A)-C(9A)-C(10A)-C(11A)	-60.6(11)
C(18A)-C(9A)-C(10A)-C(11A)	173.9(9)
C(12A)-O(4A)-C(11A)-O(3A)	10.2(17)
C(12A)-O(4A)-C(11A)-C(10A)	-176.7(9)
C(9A)-C(10A)-C(11A)-O(3A)	-13.1(16)
C(9A)-C(10A)-C(11A)-O(4A)	173.6(9)
C(11A)-O(4A)-C(12A)-C(13A)	97.0(13)
C(11A)-O(4A)-C(12A)-C(17A)	-79.0(12)
C(17A)-C(12A)-C(13A)-C(14A)	-3(2)
O(4A)-C(12A)-C(13A)-C(14A)	-178.8(12)
C(12A)-C(13A)-C(14A)-C(15A)	-1(2)
C(13A)-C(14A)-C(15A)-C(16A)	2(2)
C(14A)-C(15A)-C(16A)-C(17A)	0.1(19)
C(13A)-C(12A)-C(17A)-C(16A)	5.1(16)
O(4A)-C(12A)-C(17A)-C(16A)	-179.1(8)
C(15A)-C(16A)-C(17A)-C(12A)	-3.7(16)
N(1A)-C(9A)-C(18A)-C(23A)	-87.1(13)
C(10A)-C(9A)-C(18A)-C(23A)	38.4(16)
N(1A)-C(9A)-C(18A)-C(19A)	93.5(11)
C(10A)-C(9A)-C(18A)-C(19A)	-141.0(10)

C(23A)-C(18A)-C(19A)-C(20A)	-1.2(18)
C(9A)-C(18A)-C(19A)-C(20A)	178.3(11)
C(18A)-C(19A)-C(20A)-C(21A)	1(2)
C(19A)-C(20A)-C(21A)-C(22A)	1(2)
C(19A)-C(20A)-C(21A)-Cl(1A)	179.6(10)
C(20A)-C(21A)-C(22A)-C(23A)	-1(3)
Cl(1A)-C(21A)-C(22A)-C(23A)	179.8(12)
C(19A)-C(18A)-C(23A)-C(22A)	1(2)
C(9A)-C(18A)-C(23A)-C(22A)	-178.9(13)
C(21A)-C(22A)-C(23A)-C(18A)	1(3)
C(8B)-N(1B)-C(1B)-O(1B)	178.6(12)
C(9B)-N(1B)-C(1B)-O(1B)	-1.4(18)
C(8B)-N(1B)-C(1B)-C(2B)	-0.3(11)
C(9B)-N(1B)-C(1B)-C(2B)	179.7(9)
O(1B)-C(1B)-C(2B)-C(7B)	-179.4(14)
N(1B)-C(1B)-C(2B)-C(7B)	-0.5(14)
O(1B)-C(1B)-C(2B)-C(3B)	0(2)
N(1B)-C(1B)-C(2B)-C(3B)	179.2(14)
C(7B)-C(2B)-C(3B)-C(4B)	1(3)
C(1B)-C(2B)-C(3B)-C(4B)	-179.2(17)
C(2B)-C(3B)-C(4B)-C(5B)	-2(4)
C(3B)-C(4B)-C(5B)-C(6B)	5(5)
C(4B)-C(5B)-C(6B)-C(7B)	-6(4)
C(3B)-C(2B)-C(7B)-C(6B)	-1(2)
C(1B)-C(2B)-C(7B)-C(6B)	178.3(12)
C(3B)-C(2B)-C(7B)-C(8B)	-178.6(14)
C(1B)-C(2B)-C(7B)-C(8B)	1.1(15)
C(5B)-C(6B)-C(7B)-C(2B)	4(2)
C(5B)-C(6B)-C(7B)-C(8B)	-179.3(17)
C(1B)-N(1B)-C(8B)-O(2B)	178.8(11)
C(9B)-N(1B)-C(8B)-O(2B)	-1.2(15)
C(1B)-N(1B)-C(8B)-C(7B)	1.0(11)
C(9B)-N(1B)-C(8B)-C(7B)	-179.0(9)
C(2B)-C(7B)-C(8B)-O(2B)	-179.0(13)
C(6B)-C(7B)-C(8B)-O(2B)	4(2)
C(2B)-C(7B)-C(8B)-N(1B)	-1.3(14)
C(6B)-C(7B)-C(8B)-N(1B)	-178.3(13)
C(1B)-N(1B)-C(9B)-C(18B)	73.7(12)

C(8B)-N(1B)-C(9B)-C(18B)	-106.3(10)
C(1B)-N(1B)-C(9B)-C(10B)	-57.5(13)
C(8B)-N(1B)-C(9B)-C(10B)	122.5(9)
N(1B)-C(9B)-C(10B)-C(11B)	-45.7(12)
C(18B)-C(9B)-C(10B)-C(11B)	-175.0(10)
C(12B)-O(4B)-C(11B)-O(3B)	0.2(13)
C(12B)-O(4B)-C(11B)-C(10B)	178.8(8)
C(9B)-C(10B)-C(11B)-O(3B)	96.1(12)
C(9B)-C(10B)-C(11B)-O(4B)	-82.4(10)
C(11B)-O(4B)-C(12B)-C(13B)	90.7(11)
C(11B)-O(4B)-C(12B)-C(17B)	-89.6(11)
C(17B)-C(12B)-C(13B)-C(14B)	2.3(16)
O(4B)-C(12B)-C(13B)-C(14B)	-178.0(10)
C(12B)-C(13B)-C(14B)-C(15B)	-0.9(17)
C(13B)-C(14B)-C(15B)-C(16B)	-0.5(18)
C(14B)-C(15B)-C(16B)-C(17B)	0.5(19)
C(15B)-C(16B)-C(17B)-C(12B)	0.9(18)
C(13B)-C(12B)-C(17B)-C(16B)	-2.3(16)
O(4B)-C(12B)-C(17B)-C(16B)	177.9(10)
N(1B)-C(9B)-C(18B)-C(19B)	88.7(11)
C(10B)-C(9B)-C(18B)-C(19B)	-142.3(10)
N(1B)-C(9B)-C(18B)-C(23B)	-85.2(11)
C(10B)-C(9B)-C(18B)-C(23B)	43.7(12)
C(23B)-C(18B)-C(19B)-C(20B)	-4.4(16)
C(9B)-C(18B)-C(19B)-C(20B)	-178.7(10)
C(18B)-C(19B)-C(20B)-C(21B)	-0.1(18)
C(19B)-C(20B)-C(21B)-C(22B)	3.7(17)
C(19B)-C(20B)-C(21B)-Cl(1B)	-177.7(9)
C(20B)-C(21B)-C(22B)-C(23B)	-2.6(17)
Cl(1B)-C(21B)-C(22B)-C(23B)	178.9(8)
C(19B)-C(18B)-C(23B)-C(22B)	5.6(15)
C(9B)-C(18B)-C(23B)-C(22B)	179.8(9)
C(21B)-C(22B)-C(23B)-C(18B)	-2.3(17)
C(8C)-N(1C)-C(1C)-O(1C)	178.4(13)
C(9C)-N(1C)-C(1C)-O(1C)	-13(2)
C(8C)-N(1C)-C(1C)-C(2C)	2.0(13)
C(9C)-N(1C)-C(1C)-C(2C)	170.3(11)
O(1C)-C(1C)-C(2C)-C(3C)	2(2)

N(1C)-C(1C)-C(2C)-C(3C)	177.8(13)
O(1C)-C(1C)-C(2C)-C(7C)	-177.3(14)
N(1C)-C(1C)-C(2C)-C(7C)	-1.1(13)
C(7C)-C(2C)-C(3C)-C(4C)	0.8(19)
C(1C)-C(2C)-C(3C)-C(4C)	-177.9(12)
C(2C)-C(3C)-C(4C)-C(5C)	-1(2)
C(3C)-C(4C)-C(5C)-C(6C)	1.5(19)
C(4C)-C(5C)-C(6C)-C(7C)	-2.2(17)
C(5C)-C(6C)-C(7C)-C(2C)	2.3(16)
C(5C)-C(6C)-C(7C)-C(8C)	179.3(11)
C(3C)-C(2C)-C(7C)-C(6C)	-1.7(18)
C(1C)-C(2C)-C(7C)-C(6C)	177.4(10)
C(3C)-C(2C)-C(7C)-C(8C)	-179.2(11)
C(1C)-C(2C)-C(7C)-C(8C)	-0.1(13)
C(1C)-N(1C)-C(8C)-O(2C)	179.7(13)
C(9C)-N(1C)-C(8C)-O(2C)	9.5(19)
C(1C)-N(1C)-C(8C)-C(7C)	-2.0(13)
C(9C)-N(1C)-C(8C)-C(7C)	-172.3(9)
C(6C)-C(7C)-C(8C)-O(2C)	2(2)
C(2C)-C(7C)-C(8C)-O(2C)	179.4(14)
C(6C)-C(7C)-C(8C)-N(1C)	-175.9(11)
C(2C)-C(7C)-C(8C)-N(1C)	1.3(13)
C(8C)-N(1C)-C(9C)-C(18C)	-111.6(13)
C(1C)-N(1C)-C(9C)-C(18C)	80.6(16)
C(8C)-N(1C)-C(9C)-C(10C)	124.7(12)
C(1C)-N(1C)-C(9C)-C(10C)	-43.1(18)
N(1C)-C(9C)-C(10C)-C(11')	-46.9(19)
C(18C)-C(9C)-C(10C)-C(11')	-173.1(15)
N(1C)-C(9C)-C(10C)-C(11C)	-78(2)
C(18C)-C(9C)-C(10C)-C(11C)	156(2)
C(12C)-O(3C)-C(11C)-O(4C)	5(6)
C(12C)-O(3C)-C(11C)-C(10C)	168(3)
C(9C)-C(10C)-C(11C)-O(3C)	131(4)
C(11')-C(10C)-C(11C)-O(3C)	30(3)
C(9C)-C(10C)-C(11C)-O(4C)	-68(6)
C(11')-C(10C)-C(11C)-O(4C)	-169(10)
C(11C)-O(3C)-C(12C)-C(13C)	-150(4)
C(11C)-O(3C)-C(12C)-C(17C)	70(5)

C(17C)-C(12C)-C(13C)-C(14C)	0.0
O(3C)-C(12C)-C(13C)-C(14C)	-152(2)
C(12C)-C(13C)-C(14C)-C(15C)	0.0
C(13C)-C(14C)-C(15C)-C(16C)	0.0
C(14C)-C(15C)-C(16C)-C(17C)	0.0
C(15C)-C(16C)-C(17C)-C(12C)	0.0
C(13C)-C(12C)-C(17C)-C(16C)	0.0
O(3C)-C(12C)-C(17C)-C(16C)	131(3)
C(12')-O(4')-C(11')-O(3')	1(4)
C(12')-O(4')-C(11')-C(10C)	-175.7(19)
C(9C)-C(10C)-C(11')-O(3')	61(4)
C(11C)-C(10C)-C(11')-O(3')	153(7)
C(9C)-C(10C)-C(11')-O(4')	-122(2)
C(11C)-C(10C)-C(11')-O(4')	-31(4)
C(11')-O(4')-C(12')-C(13')	120.4(19)
C(11')-O(4')-C(12')-C(17')	-77(2)
C(17')-C(12')-C(13')-C(14')	0.0
O(4')-C(12')-C(13')-C(14')	162.0(16)
C(12')-C(13')-C(14')-C(15')	0.0
C(13')-C(14')-C(15')-C(16')	0.0
C(14')-C(15')-C(16')-C(17')	0.0
C(15')-C(16')-C(17')-C(12')	0.0
C(13')-C(12')-C(17')-C(16')	0.0
O(4')-C(12')-C(17')-C(16')	-161.9(16)
N(1C)-C(9C)-C(18C)-C(23C)	128.7(13)
C(10C)-C(9C)-C(18C)-C(23C)	-107.3(15)
N(1C)-C(9C)-C(18C)-C(19C)	-51.6(19)
C(10C)-C(9C)-C(18C)-C(19C)	72.3(18)
C(23C)-C(18C)-C(19C)-C(20C)	0(2)
C(9C)-C(18C)-C(19C)-C(20C)	-179.2(13)
C(18C)-C(19C)-C(20C)-C(21C)	-2(2)
C(19C)-C(20C)-C(21C)-C(22C)	0(3)
C(19C)-C(20C)-C(21C)-Cl(1C)	-178.3(12)
C(20C)-C(21C)-C(22C)-C(23C)	4(3)
Cl(1C)-C(21C)-C(22C)-C(23C)	-177.8(12)
C(19C)-C(18C)-C(23C)-C(22C)	4(3)
C(9C)-C(18C)-C(23C)-C(22C)	-176.3(15)
C(21C)-C(22C)-C(23C)-C(18C)	-6(3)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(9)-H(9)O(3B)#1	0.98	2.39	3.311(14)	157.2
C(10)-H(10B)O(2)	0.97	2.50	3.021(15)	113.7
C(10A)-H(10D)O(2A)	0.97	2.45	3.070(14)	121.3
C(13A)-H(13A)O(1)#2	0.93	2.59	3.357(16)	140.4
C(10B)-H(10E)O(3)#3	0.97	2.50	3.426(14)	160.5
C(10C)-H(10G)O(1C)	0.96	2.41	3.14(2)	132.8
C(13')-H(13')O(1A)#4	0.93	2.57	3.440(15)	156.5

Table S7. Hydrogen bonds for 2b [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 x,y+1,z #2 x,y,z-1 #3 x,y-1,z #4 x-1,y-1,z

The determination of enantiomeric excess

Table 3, 2a

HPLC Condition: Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (90/10); **Flow rate:** 1.0 mL/min; **Detection:** UV219 nm.

Racemic standard Enantio-enriched product PDA Multi 2 219nm,4nm PDA Multi 2 219nm,4nn 150 150 100 100 50 50 25 25 Peak Start 23.445 27.019 Peak End 25.333 29.088 Ret. Time 24.163 27.783 Peak Start 23.424 26.944 Peak End 25.077 28.981 Area% 49.650 50.350 100.000 Area% 16.944 83.056 100.000

After recrystallization

HPLC Condition: Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (90/10); **Flow rate:** 1.0 mL/min; **Detection:** UV219 nm.

Enantio-enriched product

Table 3, 2b

HPLC Condition: Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (90/10); **Flow rate:** 1.0 mL/min; **Detection:** UV217 nm.

After recrystallization

HPLC Condition:Column:ChiralpakAD-H,DaicelChemicalIndustries,Ltd.;Eluent:Hexanes/IPA (90/10);Flow rate:1.0 mL/min;Detection:UV217 nm.Racemic standardEnantio-enriched product

Table 3, 2c

HPLC Condition: Column: Chiralpak OD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (90/10); **Flow rate:** 1.0 mL/min; **Detection:** UV219 nm.

Enantio-enriched product

Table 3, 2d

HPLC Condition: Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (90/10); **Flow rate:** 1.0 mL/min; **Detection:** UV216 nm.

Table 3, 2e

HPLC Condition:Column:ChiralpakAD-H,DaicelChemicalIndustries,Ltd.;Eluent:Hexanes/IPA (90/10);Flow rate:1.0 mL/min;Detection:UV217 nm.

Table 3, 2f

HPLC Condition:Column:ChiralpakAD-H,DaicelChemicalIndustries,Ltd.;Eluent:Hexanes/IPA (90/10);Flow rate:1.0 mL/min;Detection:UV216 nm.Racemic standardEnantio-enriched product

Table 3, 2g

HPLC Condition:Column:ChiralpakAD-H,DaicelChemicalIndustries,Ltd.;Eluent:Hexanes/IPA (90/10);Flow rate:1.0 mL/min;Detection:UV219 nm.

Table 3, 2h

HPLC Condition: Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (90/10); **Flow rate:** 1.0 mL/min; **Detection:** UV227 nm.

Enantio-enriched product

Table 3, 2i

HPLC Condition:Column:ChiralpakAD-H,DaicelChemicalIndustries,Ltd.;Eluent:Hexanes/IPA (90/10);Flow rate:1.0 mL/min;Detection:UV216 nm.Racemic standardEnantio-enriched product

Table 3, 2j

HPLC Condition: Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (90/10); **Flow rate:** 1.0 mL/min; **Detection:** UV215 nm.

Scheme 4, product 4

HPLC Condition:Column:Chiralpak OD-H, Daicel Chemical Industries, Ltd.;Eluent:Hexanes/IPA (90/10);Flow rate:1.0 mL/min;Detection:UV 230 nm.

NMR spectra

¹H NMR Spectrum of **S2** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of **S3** (CDCl₃, 100 MHz)

¹³C NMR Spectrum of L15 (CDCl₃, 100 MHz)

³¹P NMR Spectrum of L15 (CDCl₃, 162 MHz)

¹H NMR Spectrum of **2a** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of **2a** (CDCl₃, 100 MHz)

¹H NMR Spectrum of **2b** (CDCl₃, 400 MHz)

S-67

¹H NMR Spectrum of **2c** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of **2c** (CDCl₃, 100 MHz)

¹H NMR Spectrum of **2d** (CDCl₃, 400 MHz)

¹H NMR Spectrum of **2e** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of **2e** (CDCl₃, 100 MHz)

¹H NMR Spectrum of **2f** (CDCl₃, 400 MHz)

S-75

¹³C NMR Spectrum of **2f** (CDCl₃, 100 MHz)

¹³C NMR Spectrum of **2g** (CDCl₃, 100 MHz)

¹³C NMR Spectrum of **2h** (CDCl₃, 100 MHz)

S-81

¹³C NMR Spectrum of **2i** (CDCl₃, 100 MHz)

¹H NMR Spectrum of **2j** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of **2j** (CDCl₃, 100 MHz)

¹H NMR Spectrum of **3** (D₂O, 400 MHz)

 13 C NMR Spectrum of **3** (D₂O, 100 MHz)

¹H NMR Spectrum of **4** (CDCl₃, 400 MHz)

