Supporting Information for

Trifluoromethylthiolative spirocyclization of biaryl ynones without leaving groups on the *para*-position of dearomative aryl rings

You Liang,^{a,b} Sijin Wang,^a Huijuan Jia,^a Beibei Chen,^b Feng Zhu,^c and Zhongyang Huo*^a

^a Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, P.R. China. E-mail: huozy69@163.com

^b College of Plant Science, Tarim University, Alaer 843300, P.R. China

^c Plant Protection and Plant Quarantine Station of Jiangsu Province, Nanjing 210014, P.R. China

Table of Contents for Supporting Information

1. General considerations
2. Preparation of the starting materials
3. General procedure for the synthesis of 3 and and ¹⁸ O-labeling experiment3
4. Characterization data of products4
5. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR of the products

1. General considerations

All reactions were carried out under air. ¹H NMR ¹³C NMR and ¹⁹F NMR spectra were measured on a Bruker Avance NMR spectrometer (400 MHz/100 MHz/377 NMR; or 600 MHz/151 MHz/565 NMR) in CDCl₃ as solvent and recorded in ppm relative to internal tetramethylsilane standard. ¹H NMR data are reported as follows: δ, chemical shift; coupling constants (J are given in Hertz, Hz) and integration. Abbreviations to denote the multiplicity of a particular signal were s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets) and m (multiplet). High resolution mass spectroscopy data of the product were collected on an Agilent Technologies 6540 UHD Accurate-Mass Q-TOF LC/MS (ESI).

2. Preparation of the starting materials

All of biaryl ynones (1), and AgSCF₃ (2) were prepared according to the reported methods (W.-C. Yang, M.-M. Zhang, Y. Sun, C.-Y. Chen, and L. Wang, *Org. Lett.*, 2021, **23**, 6691–6696).

3. General procedure for the synthesis of 3 and ¹⁸O-labeling experiment.

<u>General procedure for the synthesis of 3</u>: A 15 mL pressure tube was charged with biaryl ynones (1a, 0.2 mmol), AgSCF₃ (2, 0.4 mmol), HMPA (0.4 mmol), $K_2S_2O_8$ (0.6 mmol), TBHP (1.0 mmol, 70% aqueous solution), MeCN (2 mL), and a magnetic stir bar. Then the mixtures were allowed to react at 80 °C for 10 h under nitrogen conditions. After completion of the reaction, the mixture was concentrated to yield the crude product, which was further purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 7:1) to give the desired product **3a**.

¹⁸O-labeling experiment: A 15 mL pressure tube was charged with biaryl ynones (1a, 0.2 mmol), AgSCF₃ (2, 0.4 mmol), HMPA (0.4 mmol), $K_2S_2O_8$ (0.6 mmol), TBHP (1.0 mmol, 5.5 M in decane), anhydrous MeCN (2 mL), and a magnetic stir bar. Then the mixtures were allowed to react at 80 °C for 10 h under nitrogen conditions. After completion of the reaction, the mixture was concentrated to yield the crude product, which was further purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 7:1) to give the desired product 3a.

4. Characterization data of raw materials and products

1-([1,1'-biphenyl]-2-yl)-3-(3,5-dimethylphenyl)prop-2-yn-1-one (1d)

The product purified by flash column chromatography on silica gel (PE/ AcOEt = 10:1) to afford the raw material as a yellow liquid (261.1 mg, 84% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.86 (dd, J = 7.7, 1.0 Hz, 1H), 7.47 – 7.43 (m, 1H), 7.35 (dd, J = 7.7, 0.8 Hz, 1H), 7.34 – 7.29 (m, 5H), 7.24 (d, J = 6.7 Hz, 1H), 6.87 (s, 1H), 6.77 (s, 2H), 2.13 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 180.6, 142.6, 140.5, 138.1, 137.9, 132.4, 132.1, 131.1, 130.7, 130.1, 129.6, 128.4, 127.8, 127.4, 119.7, 94.6, 88.5, 21.0.

1-([1,1'-biphenyl]-2-yl)-3-(*m*-tolyl)prop-2-yn-1-one (1e)

The product purified by flash column chromatography on silica gel (PE/ AcOEt = 10:1) to afford the raw material as a yellow liquid (265.8 mg, 91% yield). ¹**H NMR (600 MHz, CDCl₃) δ** 7.84 – 7.80 (m, 1H), 7.41 (td, J = 7.5, 1.3 Hz, 1H), 7.31 (dd, J = 7.6, 0.9 Hz, 1H), 7.29 – 7.25 (m, 5H), 7.21 – 7.16 (m, 1H), 7.00 (dd, J = 4.7, 1.7 Hz, 2H), 6.94 – 6.89 (m, 2H), 2.12 (s, 3H). ¹³**C NMR (151 MHz, CDCl₃) δ** 180.6, 142.7, 140.5, 138.1, 138.1, 133.6, 132.2, 131.4, 131.1, 130.1, 130.1, 129.6, 128.4, 128.2, 127.8, 127.5, 119.9, 94.2, 88.7, 21.1.

1-([1,1'-biphenyl]-2-yl)-3-(4-fluorophenyl)prop-2-yn-1-one (1g)

The product purified by flash column chromatography on silica gel (PE/AcOEt = 10:1) to afford the raw material as a yellow liquid (271.85 mg, 90% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.94 (dd, J = 7.8, 1.2 Hz, 1H), 7.59 (td, J = 7.5, 1.3 Hz, 1H), 7.48 (td, J = 7.6, 1.2 Hz, 1H), 7.46 – 7.38 (m, 5H), 7.37 – 7.31 (m, 1H), 7.24 – 7.19 (m, 2H), 7.00 – 6.92 (m, 2H).¹³C NMR (151 MHz, CDCl₃) δ 180.5, 164.6, 162.9, 142.7, 140.4, 137.9, 135.22 (d, J = 9.0 Hz), 132.2, 131.0, 130.0, 129.6, 128.3, 127.8, 127.4, 116.21 (d, J = 3.6 Hz), 115.8, 115.7, 92.7, 88.7.

1-([1,1'-biphenyl]-2-yl)-3-(4-ethylphenyl)prop-2-yn-1-one (1i)

The product purified by flash column chromatography on silica gel (PE/AcOEt = 10:1) to afford the raw material as a yellow solid (287.81 mg, 93% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.95 (dd, J = 7.8, 1.1 Hz, 1H), 7.55 (td, J = 7.5, 1.3 Hz, 1H), 7.46 – 7.37 (m, 6H), 7.35 – 7.29 (m, 1H), 7.16 (d, J = 8.2 Hz, 2H), 7.08 (d, J = 8.2 Hz, 2H), 2.60 (q, J = 7.6 Hz, 2H), 1.18 (t, J = 7.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 180.7, 147.3,

142.7, 140.5, 138.1, 133.1, 132.0, 131.0, 130.0, 129.5, 128.3, 127.9, 127.8, 127.4, 117.2, 94.6, 88.8, 29.0, 15.1.

1-(2'-methyl-[1,1'-biphenyl]-2-yl)-3-phenylprop-2-yn-1-one (1q)

The product purified by flash column chromatography on silica gel (PE/ AcOEt = 10:1) to afford the raw material as a yellow liquid (275.7 mg, 91% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.09 (dd, J = 7.8, 1.2 Hz, 1H), 7.58 (td, J = 7.5, 1.4 Hz, 1H), 7.49 (td, J = 7.6, 1.3 Hz, 1H), 7.38 – 7.33 (m, 3H), 7.31 – 7.27 (m, 3H), 7.23 – 7.19 (m, 3H), 7.18 – 7.15 (m, 1H), 2.15 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 179.5, 142.4, 140.3, 137.3, 135.8, 132.9, 132.3, 131.3, 130.4, 130.3, 129.9, 129.6, 128.3, 127.8, 127.4, 125.6, 120.2, 93.2, 88.3, 20.3.

1-(2',5'-dimethyl-[1,1'-biphenyl]-2-yl)-3-phenylprop-2-yn-1-one (1w)

The product purified by flash column chromatography on silica gel (PE/ AcOEt = 10:1) to afford the raw material as a yellow liquid (287.81 mg, 93% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.06 (dd, J = 7.8, 1.1 Hz, 1H), 7.58 (td, J = 7.5, 1.4 Hz, 1H), 7.48 (td, J = 7.7, 1.2 Hz, 1H), 7.40 – 7.37 (m, 1H), 7.35 – 7.32 (m, 2H), 7.33 – 7.26 (m, 3H), 7.10 (d, J = 7.7 Hz, 1H), 7.05 – 6.99 (m, 2H), 2.29 (s, 3H), 2.10 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 179.7, 142.6, 140.1, 137.5, 134.9, 132.8, 132.8, 132.2, 131.3, 130.3, 130.0, 129.8, 128.6, 128.3, 127.3, 120.3, 93.2, 88.3, 20.9, 19.7.

1-(3',5'-dimethyl-[1,1'-biphenyl]-2-yl)-3-phenylprop-2-yn-1-one (1x)

The product purified by flash column chromatography on silica gel (PE/AcOEt = 10:1) to afford the raw material as a yellow liquid (303.88 mg, 98% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, J = 7.8 Hz, 1H), 7.54 – 7.49 (m, 1H), 7.43 – 7.36 (m, 2H), 7.31 (t, J = 7.0 Hz, 1H), 7.25 – 7.17 (m, 4H), 7.01 (s, 2H), 6.92 (s, 1H), 2.29 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 180.8, 143.2, 140.5, 138.2, 137.8, 132.8, 132.1, 130.9, 130.4, 129.8, 129.6, 128.3, 127.5, 127.2, 120.3, 93.6, 88.9, 21.3.

2'-Phenyl-3'-((trifluoromethyl)thio)-4'*H*-spiro[cyclohexane-1,1'naphthalene]-2,5-diene-4,4'-dione (3a)¹

The product purified by flash column chromatography on silica gel (PE/ AcOEt = 7:1) to afford the **3a** as a yellow solid (65.26 mg, 82% yield). ¹H **NMR (400 MHz, CDCl₃) \delta** 8.36 (dd, J = 7.7, 1.3 Hz, 1H), 7.67 – 7.57 (m, 2H), 7.36 (ddd, J = 16.1, 7.8, 2.3 Hz, 3H), 7.30 – 7.27 (m, 1H), 7.01 (d, J = 6.9 Hz, 2H), 6.75 (d, J = 10.0 Hz, 2H), 6.35 (d, J = 10.0 Hz, 2H). ¹³C **NMR (101 MHz, CDCl₃)** δ 184.2, 179.2, 166.7, 147.16, 137.5, 135.9, 134.0, 130.6, 129.9, 129.8, 129.4, 129.2, 128.7, 128.6 (q, *J* = 308.1 Hz), 128.1, 127.8, 127.3, 52.6. ¹⁹F **NMR (376 MHz, CDCl₃)** δ -39.46 (s). The characterization data matched the literature.¹

2'-(*o*-Tolyl)-3'-((trifluoromethyl)thio)-4'*H*-spiro[cyclohexane-1,1'naphthalene]-2,5-diene-4,4'-dione (3b)¹

The product purified by flash column chromatography on silica gel (PE/ AcOEt = 7:1) to afford the 3b as a yellow solid (49.01 mg, 62% yield). ¹H **NMR (400 MHz, CDCl₃)** δ 8.29 (dd, J = 7.7, 1.5 Hz, 1H), 7.54 (dqd, J = 14.8, 7.4, 1.4 Hz, 2H), 7.24 – 7.18 (m, 2H), 7.14 (d, J = 7.5 Hz, 1H), 7.05 (t, J = 7.5 Hz, 1H), 6.81 (d, J = 7.7 Hz, 1H), 6.74 (dd, J = 10.0, 3.1 Hz, 1H), 6.65 (dd, J = 9.9, 3.1 Hz, 1H), 6.34 (dd, J = 9.9, 1.6 Hz, 1H), 6.20 (dd, J = 10.0, 1.6 Hz, 1H), 2.09 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 183.0, 178.0, 164.3, 146.8, 144.9, 137.1, 133.7, 133.0, 132.8, 130.1, 129.7, 129.5, 129.4, 128.8 (q, J = 317.1Hz), 128.4, 128.3, 127.7, 126.9, 126.3, 126.1, 123.8, 52.3, 19.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -38.18 (s). The characterization data matched the literature.¹

2'-(3-Bromophenyl)-3'-((trifluoromethyl)thio)-4'*H*spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3c)¹

The product purified by flash column chromatography on silica gel (PE/ AcOEt = 7:1) to afford the **3c** as a yellow solid (48.41 mg, 51% yield). ¹H **NMR (400 MHz, CDCl₃) \delta** 8.33 (dd, J = 7.8, 1.3 Hz, 1H), 7.62 (dtd, J = 25.0, 7.5, 1.3 Hz, 2H), 7.53 (dd, J = 8.1, 0.7 Hz, 1H), 7.31 – 7.17 (m, 3H), 6.97 (d, J = 7.7 Hz, 1H), 6.75 (t, J = 8.5 Hz, 2H), 6.40 (t, J = 10.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 183.9, 178.9, 164.8, 146.8, 146.7, 137.5, 137.3, 134.2, 132.3, 130.8, 130.3, 130.3, 129.7, 129.5, 129.4, 128.7, 128.4 (q, *J* = 311.06 Hz), 128.1, 126.0, 121.9, 52.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -39.32 (s). The characterization data matched the literature.¹

2'-(3,5-Dimethylphenyl)-3'-((trifluoromethyl)thio)-4'*H*spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3d)¹

The product purified by flash column chromatography on silica gel (PE/ AcOEt = 7:1) to afford the **3d** as a yellow solid (65.55 mg, 77% yield). ¹H **NMR (400 MHz, CDCl₃) \delta** 8.27 (dd, J = 7.7, 1.4 Hz, 1H), 7.52 (dtd, J = 20.7, 7.4, 1.4 Hz, 2H), 7.21 (dd, J = 7.8, 0.8 Hz, 1H), 6.92 (s, 1H), 6.70 – 6.62 (m, 2H), 6.52 (s, 2H), 6.32 – 6.21 (m, 2H), 2.21 (s, 6H). ¹³C **NMR (101 MHz, CDCl₃)** δ 183.3, 178.3, 166.0, 146.3, 136.5, 136.4, 134.9, 132.9, 129.8, 129.3, 128.9, 128.8 (q, *J* = 317.1 Hz), 128.3, 127.6, 127.0, 123.8, 51.6, 20.3. ¹⁹F **NMR (376 MHz, CDCl₃)** δ -39.46 (s). The characterization data matched the literature.¹

2'-(*m*-Tolyl)-3'-((trifluoromethyl)thio)-4'*H*-spiro[cyclohexane-1,1'naphthalene]-2,5-diene-4,4'-dione (3e)¹

The product purified by flash column chromatography on silica gel (PE/ AcOEt = 7:1) to afford the **3e** as a yellow solid (45.71 mg, 56% yield). ¹H **NMR (400 MHz, CDCl₃) \delta** 8.35 (dd, J = 7.7, 1.4 Hz, 1H), 7.60 (ddd, J = 13.0, 7.5, 1.4 Hz, 2H), 7.25 (ddd, J = 29.6, 10.3, 2.9 Hz, 3H), 6.80 (d, J = 6.0 Hz, 2H), 6.74 (d, J = 10.0 Hz, 2H), 6.35 (d, J = 10.3 Hz, 2H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 184.3, 179.3, 166.9, 147.2, 137.59, 137.56, 135.9, 133.9, 130.4, 129.9, 129.4, 128.72, 128.7 (q, *J* = 317.1Hz) , 128.1, 127.78, 127.73, 124.3, 52.6, 21.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -39.46 (s) The characterization data matched the literature.¹

2'-(3-methoxyphenyl)-3'-((trifluoromethyl)thio)-4'H-

spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3f)

The product purified by flash column chromatography on silica gel (PE/

AcOEt = 4:1) to afford the **3f** as a yellow solid (67.62 mg, 79% yield). ¹H **NMR (400 MHz, CDCl₃) \delta** 8.35 – 8.33 (m, 1H), 7.63 – 7.57 (m, 2H), 7.30 – 7.24 (m, 2H), 6.98 – 6.87 (m, 1H), 6.73 – 6.74 (m, 2H), 6.59 – 6.57 (m, 2H), 6.36 (t, *J* = 9.2 Hz, 2H), 3.77 (d, *J* = 3.1 Hz, 3H). ¹³C **NMR (101 MHz, CDCl₃)** δ 184.3, 179.2, 166.4, 158.8, 147.2, 137.5, 137.1, 134.0, 130.5, 129.9, 129.7, 129.4, 129.1, 128.7, 128.6 (q, *J* = 311.75 Hz), 128.0, 119.6, 114.0, 113.7, 55.3, 52.5. ¹⁹F **NMR (377 MHz, CDCl₃)** δ -39.39 (d, *J* = 2.1 Hz). HRMS (ESI) calcd for C₂₃H₁₅F₃NaO₃S [M+Na]⁺ 451.0586, found 451.0592.

2'-(4-Fluorophenyl)-3'-((trifluoromethyl)thio)-4'*H*-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3g)¹

The product purified by flash column chromatography on silica gel (PE/ AcOEt = 7:1) to afford the **3g** as a yellow solid (55.7 mg, 67% yield). ¹H **NMR (600 MHz, CDCl₃) \delta** 8.26 (d, *J* = 7.1 Hz, 1H), 7.59 – 7.54 (m, 1H), 7.51 (t, *J* = 7.2 Hz, 1H), 7.22 (d, *J* = 7.8 Hz, 1H), 6.99 – 6.93 (m, 4H), 6.67 (d, *J* = 9.9 Hz, 2H), 6.30 (d, *J* = 9.9 Hz, 2H). ¹³C **NMR (151 MHz, CDCl₃)** δ 182.9, 178.0, 164.7, 161.87 (d, *J* = 249.9 Hz), 145.9, 136.4, 133.1, 130.8 (d, *J* = 3.4 Hz), 129.7, 129.4, 128.8 (q, *J* = 317.1 Hz), 128.7, 128.46 (dd, *J* = 16.5, 7.8 Hz), 127.7, 127.1, 126.4, 114.18 (d, J = 22.0 Hz), 51.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -39.42 (s), -110.99 (s). The characterization data matched the literature.¹

2'-(4-Chlorophenyl)-3'-((trifluoromethyl)thio)-4'H-

spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3h)¹

he product purified by flash column chromatography on silica gel (PE/ AcOEt = 7:1) to afford the **3h** as a yellow solid (49.65 mg, 58% yield). ¹H **NMR (400 MHz, CDCl₃) \delta** 8.33 (dd, J = 7.7, 1.1 Hz, 1H), 7.62 (tdd, J = 15.0, 10.8, 4.0 Hz, 2H), 7.31 (dd, J = 17.6, 8.0 Hz, 3H), 6.97 (d, J = 8.4 Hz, 2H), 6.74 (d, J = 10.0 Hz, 2H), 6.38 (d, J = 10.0 Hz, 2H). ¹³C **NMR (101 MHz, CDCl₃) \delta** 183.9, 179.0, 165.5, 146.8, 137.3, 135.4, 134.2, 134.1, 130.8, 130.2, 129.7, 129.5, 128.8, 128.7, 128.6 (q, *J* = 317.1 Hz), 128.2, 128.1, 52.5. ¹⁹F **NMR (376 MHz, CDCl₃)** δ -39.40 (s). The characterization data matched the literature.¹

2'-(4-Ethylphenyl)-3'-((trifluoromethyl)thio)-4'H-spiro[cyclohexane-

1,1'-naphthalene]-2,5-diene-4,4'-dione (3i)¹

The product purified by flash column chromatography on silica gel (PE/ AcOEt = 7:1) to afford the **3i** as a yellow solid (66.38 mg, 78% yield). ¹H **NMR (400 MHz, CDCl₃) \delta** 8.35 (dd, J = 7.7, 1.5 Hz, 1H), 7.60 (ddd, J = 12.9, 7.5, 1.4 Hz, 2H), 7.28 (dd, J = 7.8, 0.8 Hz, 1H), 7.16 (d, J = 8.1 Hz, 2H), 6.91 (d, J = 8.1 Hz, 2H), 6.74 (d, J = 10.0 Hz, 2H), 6.35 (d, J = 10.0 Hz, 2H), 2.66 (t, J = 7.6 Hz, 2H), 1.26 (d, J = 7.6 Hz, 3H). ¹³C **NMR (101 MHz, CDCl₃)** δ 184.3, 179.3, 147.3, 145.3, 137.5, 133.9, 133.3, 130.5, 129.9, 129.3, 128.7, 128.6 (q, *J* = 311.06 Hz),128.1, 127.2, 127.1, 52.8, 28.5, 14.8. ¹⁹F **NMR (376 MHz, CDCl₃)** δ -39.50 (s). The characterization data matched the literature.¹

2'-(4-Methoxyphenyl)-3'-((trifluoromethyl)thio)-4'H-

spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3j)¹

SCF₃ OMe

The product purified by flash column chromatography on silica gel (PE/ AcOEt = 5:1) to afford the **3j** as a yellow solid 68.4 mg, 80% yield). ¹H **NMR (400 MHz, CDCl₃) \delta** 8.33 (dd, J = 7.8, 1.4 Hz, 1H), 7.59 (dtd, J = 23.5, 7.4, 1.3 Hz, 2H), 7.33 – 7.23 (m, 1H), 6.96 (d, J = 8.7 Hz, 2H), 6.88 – 6.83 (m, 2H), 6.74 (t, J = 6.4 Hz, 2H), 6.37 (t, J = 6.4 Hz, 2H), 3.82 (s, 3H). ¹³C **NMR (101 MHz, CDCl₃)** δ 184.3, 179.4, 166.8, 160.0, 147.4, 137.6, 133.9, 130.5, 130.2, 130.0, 129.9, 129.5 (q, *J* = 311.03 Hz), 129.3, 128.7, 128.6, 128.4, 128.1, 113.2, 55.2, 52.9. ¹⁹F **NMR (376 MHz, CDCl₃)** δ -39.54 (s). The characterization data matched the literature.¹

2'-(4-butylphenyl)-3'-((trifluoromethyl)thio)-4'*H*-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3k)

The product purified by flash column chromatography on silica gel (PE/AcOEt = 4:1) to afford the **3k** as a yellow solid (65.33mg, 72% yield). ¹**H NMR (400 MHz, CDCl₃) \delta** 8.34 (dd, J = 7.7, 1.2 Hz, 1H), 7.65 – 7.49 (m, 2H), 7.31 – 7.27 (m, 1H), 7.13 (d, J = 8.0 Hz, 2H), 6.90 (d, J = 8.0 Hz, 2H), 6.73 (d, J = 10.0 Hz, 2H), 6.35 (d, J = 10.0 Hz, 2H), 2.67 – 2.51 (m, 2H), 1.60 (dd, J = 15.6, 8.1 Hz, 2H), 1.34 (dt, J = 14.5, 7.4 Hz, 2H), 0.93 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 184.3, 179.3, 167.0, 147.3, 144.1, 137.6, 133.9, 133.3, 130.5, 129.9, 129.7, 129.3, 128.9 (q, J = 306.06 Hz), 128.7, 128.1, 127.7, 127.1, 52.8, 35.3, 33.1, 22.4, 13.9. ¹⁹F NMR (377 MHz, CDCl₃) δ -39.50 (d, J = 6.5 Hz). HRMS (ESI) calcd for $C_{26}H_{21}O_2NaSF_3$ [M+Na]⁺ 477.1107, found 477.1111.

2'-(Thiophen-2-yl)-3'-((trifluoromethyl)thio)-4'*H*-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3l)¹

The product purified by flash column chromatography on silica gel (PE/AcOEt = 7:1) to afford the **3l** as a yellow solid (60.61 mg, 75% yield). ¹H **NMR (400 MHz, CDCl₃) \delta** 8.27 (dd, J = 7.8, 1.4 Hz, 1H), 7.53 (dtd, J = 22.4, 7.4, 1.4 Hz, 2H), 7.36 (dd, J = 5.1, 1.1 Hz, 1H), 7.26 – 7.21 (m, 1H), 6.96 (dd, J = 5.0, 3.6 Hz, 1H), 6.86 (dd, J = 3.6, 1.0 Hz, 1H), 6.67 – 6.60 (m, 2H), 6.40 – 6.33 (m, 2H). ¹³C **NMR (101 MHz, CDCl₃) \delta** 183.3, 177.8, 158.7, 146.0, 136.3, 134.5, 133.09, 129.9, 129.0 (q, *J* = 311.3 Hz), 128.7, 128.4, 128.2, 127.7, 127.1, 125.8, 51.6. ¹⁹F **NMR (376 MHz, CDCl₃) \delta** - 39.48 (s). The characterization data matched the literature.¹

2'-(Naphthalen-2-yl)-3'-((trifluoromethyl)thio)-4'*H*spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3m)¹

The product purified by flash column chromatography on silica gel (PE/ AcOEt = 7:1) to afford the **3m** as a yellow solid (51 mg, 57% yield). ¹H **NMR (600 MHz, CDCl₃)** δ 8.38 (d, *J* = 7.8 Hz, 1H), 7.86 (d, *J* = 7.7 Hz, 1H), 7.82 (d, *J* = 8.4 Hz, 1H), 7.79 (d, *J* = 7.6 Hz, 1H), 7.65 (t, *J* = 7.5 Hz, 1H), 7.60 (t, *J* = 7.6 Hz, 1H), 7.57 – 7.51 (m, 2H), 7.47 (s, 1H), 7.31 (d, *J* = 7.8 Hz, 1H), 7.13 (d, *J* = 8.4 Hz, 1H), 6.83 (d, *J* = 9.4 Hz, 2H), 6.34 (t, *J* = 9.4 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 184.1, 179.3, 166.6, 147.2, 137.5, 135.9, 134.0, 133.4, 133.0, 132.0, 130.7, 130.5, 130.1, 130.0, 129.4, 128.8, 128.6 (q, *J* = 311.15 Hz), 128.3, 128.1, 127.8, 127.2, 127.0, 126.7, 124.8, 52.8. ¹⁹F NMR (565 MHz, CDCl₃) δ -39.39 (s). The characterization data matched the literature.¹

7'-Fluoro-2'-phenyl-3'-((trifluoromethyl)thio)-4'*H*-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3n)¹

The product purified by flash column chromatography on silica gel (PE/ AcOEt = 7:1) to afford the **3n** as a yellow solid (68.33 mg, 84% yield). ¹H **NMR (400 MHz, CDCl₃)** δ 8.38 (dd, J = 8.8, 5.8 Hz, 1H), 7.43 – 7.31 (m, 3H), 7.27 (td, J = 8.4, 2.5 Hz, 1H), 7.04 – 6.98 (m, 2H), 6.96 (dd, J = 9.1, 2.4 Hz, 1H), 6.78 – 6.71 (m, 2H), 6.40 – 6.32 (m, 2H). ¹³C **NMR (101 MHz, CDCl₃)** δ 183.7, 178.1, 167.2, 166.5, 164.6, 146.4, 140.7 (d, J = 8.5 Hz), 135.7, 131.9 (d, J = 9.6 Hz), 130.9, 129.3, 128.5 (q, *J* = 310.6 Hz), 127.9, 127.2, 126.5 (d, J = 2.6 Hz), 117.6, 117.4, 114.9, 114.7, 52.5 (d, J = 1.3 Hz). ¹⁹F **NMR (377 MHz, CDCl₃)** δ -39.43 (s), -101.77 (d, J = 2.9 Hz). The characterization data matched the literature.¹

7'-Methoxy-2'-phenyl-3'-((trifluoromethyl)thio)-4'*H*spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (30)¹

The product purified by flash column chromatography on silica gel (PE/ AcOEt = 7:1) to afford the **3o** as a yellow solid (63.88 mg, 76% yield). ¹H **NMR (400 MHz, CDCl₃) \delta** 8.24 (d, J = 8.8 Hz, 1H), 7.27 (ddd, J = 16.1, 7.8, 3.7 Hz, 3H), 7.01 (dd, J = 8.8, 2.5 Hz, 1H), 6.94 – 6.90 (m, 2H), 6.68 (t, J = 6.4 Hz, 2H), 6.61 (d, J = 2.4 Hz, 1H), 6.27 (t, J = 6.4 Hz, 2H), 3.76 (d, J = 3.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 183.1, 177.2, 164.7, 163.0, 146.3, 138.9, 134.9, 130.2, 129.5, 128.6 (q, J = 311.06 Hz), 128.0, 126.7, 126.3, 122.2, 114.6, 111.4, 54.7, 51.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -39.49 (s). The characterization data matched the literature.¹

2-Methyl-2'-phenyl-3'-((trifluoromethyl)thio)-4'*H*-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3p)¹

The product purified by flash column chromatography on silica gel (PE/ AcOEt = 7:1) to afford the **3p** as a yellow solid (53.61 mg, 65% yield). ¹H **NMR (600 MHz, CDCl₃) \delta** 8.35 (dd, J = 7.9, 1.3 Hz, 1H), 7.69 – 7.53 (m, 2H), 7.40 – 7.29 (m, 3H), 7.18 (d, J = 7.6 Hz, 1H), 7.00 (s, 2H), 6.73 (d, J = 9.8 Hz, 1H), 6.35 – 6.24 (m, 2H), 1.76 (d, J = 1.2 Hz, 3H). ¹³C **NMR** (151 MHz, CDCl₃) δ 185.0, 179.4, 166.9, 155.7, 147.2, 138.7, 135.6, 134.3, 131.1, 130.8, 130.2, 129.7, 129.5, 129.3, 128.7 (q, J = 309.55 Hz), 128.4, 127.8, 127.6, 55.8, 20.2. ¹⁹F **NMR (565 MHz, CDCl₃)** δ -39.46 (s). The characterization data matched the literature.¹

3-Methyl-2'-phenyl-3'-((trifluoromethyl)thio)-4'*H*-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3q)¹

The product purified by flash column chromatography on silica gel (PE/ AcOEt = 7:1) to afford the **3q** as a yellow solid (69.74 mg, 85% yield). ¹H **NMR (600 MHz, CDCl₃) \delta** 8.27 (dd, J = 7.8, 1.2 Hz, 1H), 7.52 (dtd, J = 15.0, 7.8, 1.2 Hz, 2H), 7.27 (dt, J = 14.4, 7.5 Hz, 3H), 7.19 (s, 1H), 6.89 (dd, J = 21.5, 6.9 Hz, 2H), 6.64 (dd, J = 9.8, 3.1 Hz, 1H), 6.44 (dd, J = 2.9, 1.4 Hz, 1H), 6.24 (d, J = 9.8 Hz, 1H), 1.78 (d, J = 1.2 Hz, 3H).¹³C **NMR** (151 MHz, CDCl₃) δ 183.8, 178.3, 166.5, 145.6, 141.3, 137.3, 136.7, 134.9, 132.8, 129.4, 128.8, 128.6, 128.3, 128.1, 128.0, 127.6, 127.0, 126.7, 126.5, 126.0, 51.8, 14.7.¹⁹F **NMR (565 MHz, CDCl₃)** δ -39.79 (s). The characterization data matched the literature.¹

3-Methyl-2'-(p-tolyl)-3'-((trifluoromethyl)thio)-4'H-

spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3r)¹

The product purified by flash column chromatography on silica gel (PE/ AcOEt = 7:1) to afford the **3r** as a yellow solid (61.29 mg, 73% yield). ¹H **NMR (600 MHz, CDCl₃)** δ 8.33 (dd, J = 7.8, 1.2 Hz, 1H), 7.60 (td, J = 7.6, 1.4 Hz, 1H), 7.57 – 7.53 (m, 1H), 7.28 – 7.23 (m, 1H), 7.11 (d, J = 7.7 Hz, 2H), 6.85 (d, J = 9.6 Hz, 2H), 6.70 (dd, J = 9.8, 3.1 Hz, 1H), 6.50 (dd, J = 2.9, 1.4 Hz, 1H), 6.31 (d, J = 9.8 Hz, 1H), 2.35 (s, 3H), 1.86 (d, J = 1.2 Hz, 3H).¹³C NMR (151 MHz, CDCl₃) δ 185.0, 179.4, 167.8, 146.8, 142.5, 139.0, 138.4, 137.7, 133.8, 133.2, 130.3, 129.9, 129.3, 129.1, 128.65 (q, J = 311.06 Hz), 128.60, 128.4, 128.2, 128.1, 127.4, 126.9, 53.0, 21.3, 15.7.¹⁹F NMR (565 MHz, CDCl₃) δ -39.80 (s). The characterization data matched the literature.¹

2-Methoxy-2'-phenyl-3'-((trifluoromethyl)thio)-4'H-

spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3s)¹

The product purified by flash column chromatography on silica gel (PE/AcOEt = 5:1) to afford the **3s** as a yellow solid (55.61 mg, 65% yield). ¹H **NMR (600 MHz, CDCl₃) \delta** 8.33 (dd, J = 7.8, 1.0 Hz, 1H), 7.61 (td, J = 7.7, 1.4 Hz, 1H), 7.57 (dd, J = 11.0, 4.1 Hz, 1H), 7.38 – 7.31 (m, 3H), 7.24 (d, J = 7.8 Hz, 1H), 7.05 – 6.88 (m, 2H), 6.47 (d, J = 9.7 Hz, 1H), 6.30 (dd, J = 9.7, 0.8 Hz, 1H), 5.60 (s, 1H), 3.59 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 186.7, 179.5, 172.3, 166.4, 142.8, 138.3, 135.6, 134.0, 130.38,

130.34, 129.28, 129.23, 128.6 (q, J = 311.06 Hz), 128.4, 128.1, 127.8, 127.2, 126.9, 105.1, 56.1, 55.0.¹⁹F NMR (565 MHz, CDCl₃) δ -39.84 (s). The characterization data matched the literature.¹

3-Methoxy-2'-phenyl-3'-((trifluoromethyl)thio)-4'H-

spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3t)¹

The product purified by flash column chromatography on silica gel (PE/ AcOEt = 5:1) to afford the **3t** as a yellow solid (68.2 mg, 80% yield).¹**H NMR (600 MHz, CDCl₃) \delta** 8.27 (d, J = 7.8 Hz, 1H), 7.54 (td, J = 7.6, 1.5 Hz, 1H), 7.49 (t, J = 7.2 Hz, 1H), 7.27 (dt, J = 14.0, 7.7 Hz, 3H), 7.23 – 7.21 (m, 1H), 6.94 – 6.87 (m, 2H), 6.66 (dd, J = 9.8, 2.7 Hz, 1H), 6.29 (d, J = 9.7 Hz, 1H), 5.61 (d, J = 2.7 Hz, 1H), 3.55 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 179.4, 179.3, 167.9, 152.4, 147.2, 139.0, 135.8, 134.0, 130.4, 129.7, 129.2, 129.1, 128.65, 128.62 (q, *J* = 332.2 Hz), 128.0, 127.8, 127.4, 127.2, 115.3, 55.2, 52.8.¹⁹F NMR (565 MHz, CDCl₃) δ -39.50 (s). The characterization data matched the literature.¹

2,3-Dimethoxy-2'-phenyl-3'-((trifluoromethyl)thio)-4'*H*spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3u)¹

The product purified by flash column chromatography on silica gel (PE/ AcOEt = 4:1) to afford the **3u** as a yellow solid (55.89 mg, 61% yield)⁻¹**H NMR (600 MHz, CDCl₃) \delta** 8.26 (dd, J = 7.8, 1.1 Hz, 1H), 7.56 – 7.46 (m, 2H), 7.34 – 7.24 (m, 3H), 7.20 (d, J = 7.3 Hz, 1H), 7.05 – 6.93 (m, 2H), 6.32 (d, J = 9.7 Hz, 1H), 6.21 (d, J = 9.7 Hz, 1H), 3.78 (s, 3H), 3.38 (s, 3H).¹³**C NMR (151 MHz, CDCl₃)** δ 182.7, 178.5, 165.7, 158.2, 140.9, 138.8, 137.4, 134.6, 132.8, 129.5, 129.1, 128.5, 128.18, 128.16, 127.6 (q, J = 309.55 Hz), 127.5, 126.9, 126.7, 126.4, 126.1, 125.6, 60.2, 59.6, 55.8.¹⁹**F NMR (565 MHz, CDCl₃)** δ -39.88 (s). The characterization data matched the literature.¹

2,5-dimethyl-2'-phenyl-3'-((trifluoromethyl)thio)-4'*H*spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3v)

The product purified by flash column chromatography on silica gel (PE/ AcOEt = 7:1) to afford the **3w** as a yellow solid (41.08 mg, 48% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.35 (d, J = 7.8 Hz, 1H), 7.62 (t, J = 7.5 Hz, 1H), 7.56 (t, J = 7.5 Hz, 1H), 7.37 – 7.28 (m, 3H), 7.13 (d, J = 7.8 Hz, 1H), 6.93 (d, J = 6.8 Hz, 2H), 6.47 (s, 1H), 6.25 (s, 1H), 1.83 (s, 3H), 1.72 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 185.5, 179.5, 167.8, 155.1, 142.3, 139.5, 136.7, 135.6, 134.2, 131.1, 130.8, 130.4, 130.2, 129.1, 128.7 (q, J =310.56 Hz), 128.4, 127.8, 127.6, 126.5, 56.1, 20.0, 15.3. ¹⁹F NMR (565 MHz, CDCl₃) δ -39.55 (s). HRMS (ESI) calcd for C₂₄H₁₇F₃NaO₂S [M+Na]⁺ 449.0794 , found 449.0803.

3,5-dimethyl-2'-phenyl-3'-((trifluoromethyl)thio)-4'H-

spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3w)

The product purified by flash column chromatography on silica gel (PE/ AcOEt = 7:1) to afford the **3x** as a yellow solid (62.19 mg, 73% yield). ¹H **NMR (600 MHz, CDCl₃) \delta** 8.33 (d, J = 7.8 Hz, 1H), 7.59 (t, J = 7.5 Hz, 1H), 7.54 (t, J = 7.5 Hz, 1H), 7.35 – 7.28 (m, 3H), 7.23 (d, J = 7.8 Hz, 1H), 6.93 (d, J = 7.5 Hz, 2H), 6.49 (s, 2H), 1.83 (s, 6H). ¹³C **NMR (151 MHz, CDCl₃)** δ 185.4, 179.6, 168.5, 141.9, 139.2, 137.4, 136.1, 133.8, 129.8, 128.9, 128.7 (q, J = 310.56 Hz), 128.8, 128.5, 128.1, 127.4, 127.3, 52.5, 15.9. ¹⁹F NMR (565 MHz, CDCl₃) δ -39.64 (s). HRMS (ESI) calcd for C₂₄H₁₇F₃NaO₂S [M+Na]⁺ 449.0794 , found 449.080

References for known compounds:

[1] W.-C. Yang, M.-M. Zhang, Y. Sun, C.-Y. Chen, and L. Wang, Org.

Lett., 2021, 23, 6691-6696

5¹H NMR, ¹³C NMR and ¹⁹F NMR of the products

-180.52 -180.52 -180.52 -182.53 -164.61 -162.65 -135.12 -135.12 -135.25 -135

< -39.39

-179.40-179.40-179.40-166.81-166.81-160.08-130.55123.37123.37123.37123.37123.37123.37123.37123.37-113.33-1

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

