Electronic Supplementary Information

Room Temperature Synthesis of Ag₃PO₄ Nanoparticles with the Assistance of Trisodium Citrate for Photocatalytic Dye Degradation

Zhe Wang^{a,1}, Xueshuang Li^{b,1}, Shengyan Yin^a, Xingyuan Guo^{b,*}, Weiping Qin^{a,*}

^aState Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China ^bCollege of Physics, Jilin University, Changchun 130012, China

Fig. 1. MB (a), RhB (b) and MO (c) photocatalytic activity of the Ag_3PO_4 NPs with different size at different reaction times under visible light irradiation.

Fig. 1 show the photodegradation rate of MB, RhB and MO under visible light irradiation. Compared with the photocatalytic capacity of different Ag_3PO_4 NPs, the photocatalytic degradation rate of S1 samples is the strongest.

^{*}Corresponding author.

E-mail: guoxy@jlu.edu.cn; wpqin@jlu.edu.cn

¹ These authors contributed equally to this work.

Fig. 2. HRTEM images of the Ag₃PO₄ NPs before (a) and after (b) catalysis reactions.

Fig 2a, b shows the HRTEM image of Ag_3PO_4 NPs before and after catalysis reactions. The lattices fringes are clearly discerned in a different location, which most of fringes (0.260-0.270 nm) belong to Ag_3PO_4 NPs. But in Fig 2b, the lattice fringes with a d-spacing of 0.235 nm, which could be matches the (111) reflection of face-centered cubic silver. The lattice fringes with d-spacing of 0.273 nm might be agree with the (111) reflection of primitive cubic $Ag_2O_[1]$

Reference

1. Li, M.Y., et al., *Out-of-Substrate Ag–Ag₂O Nanoplates: Surfactantless Photochemical Synthesis, Structural Evolution, and Mechanistic Study.* ACS Omega, 2016. 1(4): p. 696-705.