Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

> Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary Information

Ni nanoparticles embedded in nitrogen doped carbon derived from

metal-organic framework for efficient hydrogenation of vanillin to

vanillyl alcohol

Zegang Qiu^a, Xiaoxia He^a, Shaobo Ma^a, Zhiqin Li^a*, Yu Xiong^b and Yueling Cao^{b,c}*

^a College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, PR China.

^bXi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, PR China.

^cChongqing Science and Technology Innovation Center of Northwestern Polytechnical University, Chongqing 401135, PR China

*e-mail: lizhiqin@xsyu.edu.cn; yuelingcao@nwpu.edu.cn

Catalysts	Reaction conditions				Vanillin	Vanillyl alcohol	D -f	D. (
	T/°C	p/MPa	t/h	Solvent	conversion/%	Selectivity/%	Kelerence	Date
Ru/CNTs	50	1	3	Decalin/ H ₂ O	100	98.0	[12]	2014
Ru/C	55	1.38	1	H ₂ O	95	91.0	[13]	2014
Rh/C	100	3	3	H_2O	99	83.0	[14]	2018
Pt/C	100	3	3	H_2O	100	70.0	[14]	2018
Pt/TiO ₂	70	2	2	H_2O	58.1	97.9	[15]	2020
Pt/C	100	2.9	3	H_2O	100	63.0	[16]	2018
^a Pd/CM	100	1	1	H_2O	95	80.0	[17]	2014
Pd/Ru@GO	room	1	12	methanol	100	100	[18]	2020
Ir/ZrO_2	100	3	4	H_2O	100	77.0	[19]	2019
Ni/ZrO ₂	100	3	4	H_2O	95	86.0	[19]	2019
Ni/AC	150	0.5	2	H_2O	35.9	75.2	[20]	2017
Co/N-C	150	1	4	H_2O	77.9	61.8	[21]	2017
^b Ni@CN-425	80	1	2	H ₂ O	99.5	98.3	This work	

Table S1 Hydrogenation of vanillin to vanillyl alcohol over various catalysts in literatures and this work

^aCM: Carbonaceous Microspheres. ^b Ni@CN-425 catalyst in this work is presented for comparsion.

Fig. S2 TGA curves of Ni@CN-325, Ni@CN-425 and Ni@CN-525

Fig. S4 High resolution XPS spectra of C1s of serial Ni@CN catalysts

Table S2 The content of surface elements of Ni@CN catalysts obtained from XPS

_					
	Catalysts	Ni/%	C/%	N/%	O/%
	Ni@CN-225	12.1	42.4	3.8	41.7
	Ni@CN-325	10.5	63.3	2.7	23.5
	Ni@CN-425	7.5	70.0	2.6	19.9
	Ni@CN-525	6.0	78.5	2.5	13.0
	Ni@CN-625	5.3	80.2	2.2	12.3

Fig. S5 TEM images of Ni@CN-225 catalyst with different magnification

Fig. S6 TEM images of Ni@CN-325 catalyst with different magnification

Fig. S7 EDS spectra of Ni@CN-425 catalyst (phase: NiK)

Fig. S8 The BJH (Barrett-Joyner-Halenda) pore distribution curves of Ni@CN catalysts

Temperature (°C)

The temperature-programmed desorption of H₂ (H₂-TPD) was measured on AutoChem II 2920 (Micromeritics, USA). About 70 mg catalyst was first pretreated at 300 °C for 1.5 h in an argon flow (50 mL/min) before it was cooled to 50 °C. Then the argon was switched to a 10% H₂/Ar flow (50 mL/min) and kept for 3 h. Subsequently, the H₂/Ar flow was switched to helium flow 50 mL/min) and kept for 1 h in order to eliminate the physically adsorbed H₂. Finally, the temperature was ramped from 50 °C to 800 °C at a rate of 10 °C/min in the helium flow.