Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Modulating Intrinsic Properties of Platinum-Cobalt Nanowires for Enhanced Electrocatalysis of oxygen reduction reaction

Fangfang Chang^a, Yongpeng Liu^a, Lin Yang^a, Qing Zhang^a, Juncai Wei^a, Xiaolei Wang^b and Zhengyu Bai ^{a*}

^aCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China. Email: baizhengyu2000@163.com;

^bDepartment of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.

Fig. S1. TEM images of the nanowire samples Pt₂₃Co₇₇(A), Pt₅₇Co₄₃ (B) and Pt₇₀Co₃₀(C).

Fig. S2. TEM images (A-B) and HR-TEM images (C-D) of Pt NWs

Fig. S3. TEM images of Pt₇₀Co₃₀ NPs

Table S1. Summary of NWs Sizes and Lattice Constants for Pt_nCo_{100-n}/C alloy catalysts

Catalysts	NWs size (nm)	Metal loading (% wt)	Lattice parameter(nm)	Scherrer size (nm)
Pt ₂₃ Co ₇₇ /C	2.4±0.5	15.0%	0.3650	2.6±0.3
Pt ₅₇ Co ₄₃ /C	2.1±0.3	12.0%	0.3740	2.3±0.5
Pt ₇₀ Co ₃₀ /C	1.8±0.4	12.5%	0.3790	2.1±0.4
Pt/C	2.0±0.7	15.0%	0.3920	2.3±0.5

Fig. S4. CV (A) and RDE (B) curves for commercial Pt/C in 0.1 M HClO₄ solution saturated with nitrogen (scan rate: 50 mV/s) and oxygen (scan rate: 10 mV/s and rotation speed: 1600 rpm)

Fig. S5. EIS plots of the $Pt_{23}Co_{77}/C$, $Pt_{57}Co_{43}/C$ and $Pt_{70}Co_{30}/C$, respectively.

Table S2. Comparison of compositions, and ORR activities for different PtCo alloy catalysts

		Mass Activity (A/mg _{Pt} -	Specific	
Catalyst	Electrolyte	1)	Activity(mA/cm ²)	Reference
PtCo NRAs	0.1 M HClO ₄	0.194	1.854	1
Au/Pt-Co/C	0.1 M HClO ₄	0.62	1.43	2
PtCo MNs	0.1M HClO ₄	0.72	0.91	3
Pt-Co	0.1 M HClO ₄	0.53	0.8	4
Pt-Co GB-NWs/C-OCP	0.1M HClO ₄	1.31	1.55	5
Pt ₇₀ Co ₃₀ /C	0.1M HClO ₄	2.3	4.1	This work

Fig. S6. CV (A) and RDE (B) curves for commercial Pt/C before and after 10,000 potential cycles (sweep rate, 100mV/s, potential cycle window: 0.6 and 1.1 V) in 0.1 M HClO₄ solution saturated with nitrogen (scan rate: 50 mV/s) and oxygen (scan rate: 10 mV/s and rotation speed: 1600 rpm).

Fig. S7. Chronoamperometric curves (CAs) of the glassy carbon electrodes coated by $Pt_{70}Co_{30}/C$ and commercial Pt/C catalysts measured in 0.1 M HClO₄ solution saturated with nitrogen

Fig. S8. Mass activity and specific activity data Pt₇₀Co₃₀/C NWs (A) and commercial Pt/C (B) at 0.900 V (vs. RHE) before and after 10,000 cycles.

Fig. S9. TEM (A) and HR-TEM (B) images for $Pt_{70}Co_{30}/C$ after 10,000 cycles

Table S3. The electron configuration and natural atomic charge of the optimized structure of Pt_nCo_{4-n} (n=1, 2, 3, 4) clusters

cluster	atom No	electron configuration	charge	e-transfer
	1Pt	6S ^{0.57} 5d ^{9.41} 6p ^{0.08}	0.00	5
Pt_4	2Pt	$6S^{0.57}5d^{9.41}6p^{0.08}$	0.00	

	3Pt	6S ^{0.68} 5d ^{9.16} 6p ^{0.12}	0.00	
	4Pt	6S ^{0.68} 5d ^{9.16} 6p ^{0.12}	0.00	
	1Co	4S ^{0.20} 3d ^{2.90} 4p ^{0.08}	0.48	
Pt_3Co_1	2Pt	6S ^{0.34} 5d ^{4.85} 6p ^{0.05}	-0.16	
	3Pt	6S ^{0.37} 5d ^{4.87} 6p ^{0.05}	-0.16	
	4Pt	6S ^{0.37} 5d ^{4.87} 6p ^{0.05}	-0.16	S
	1Co	$4S^{0.57}3d^{7.90}4p^{0.13}5p^{0.14}$	0.23	5
Pt_2Co_2	2Pt	6S ^{1.05} 5d ^{9.18} 6p ^{0.03}	-0.23	
	3Pt	6S ^{1.05} 5d ^{9.18} 6p ^{0.03}	-0.23	
	4Co	$4S^{0.57}3d^{7.90}4p^{0.13}4d^{0.01}5p^{0.14}$	0.23	(Sec
	1Co	4S ^{0.26} 3d ^{3.94} 4p ^{0.08}	0.14	Pt
Pt_1Co_3	2Pt	6S ^{0.38} 5d ^{4.73} 6p ^{0.04}	-0.42	
	3Co	$4S^{0.26}3d^{3.94}4p^{0.08}$	0.14	
	4Co	4S ^{0.26} 3d ^{3.94} 4p ^{0.08}	0.14	<u> </u>

Fig. S10 Frontier molecular orbitals and the energy of LUMO of O atom and HOMO of Pt_nCo_{4-n} (n = 4, 3, 2, 1) clusters

Table S4. Structure and adsorption energy (eV) for O on Pt_nCo_{10-n} (n=2, 6, 7, 10) clusters

	Pt_2Co_8	Pt ₆ Co ₄	Pt ₇ Co ₃	Pt ₁₀
			-	
0	-2.30	-2.12	-1.95	-1.91

Table S5. Structure and adsorption energy (eV) for OH on Pt_nCo_{10-n} (n=2, 6, 7, 10) clusters

	Pt ₂ Co ₈	Pt ₆ Co ₄	Pt_7Co_3	Pt_{10}
OH	-1.89	-1.80	-1.78	-1.74

Table S6. Structure and adsorption energy (eV) for OOH on Pt_nCo_{10-n} (n=2, 6, 7, 10) clusters

	Pt ₂ Co ₈	Pt ₆ Co ₄	Pt ₇ Co ₃	Pt ₁₀
OOH	-1.72	-1.69	-1.65	-1.59

 Table S7. The correction of zero point energy and entropy of the adsorbed and gaseous species.

	ZPE(eV)	TS(eV)
*00H	0.35	0
*0	0.05	0
*ОН	0.31	0.01
H ₂ O	0.56	0.67
H ₂	0.27	0.41

Reference:

- 1 S. -Q. Hu, Z. Wang, H. L. Chen, S. B. Wang, X. G. Li, X. Y. Zhang, P. G. Shen, G. Pei, Ultrathin PtCo nanorod assemblies with self-optimized surface for oxygen reduction reaction. *J. Electroanal. Chem.*, 2020, **870**, 114194.
- 2 C. Ding, Z. Mao, J.-S. Liang, X. Qin, Q. Zhang, F. Yang, Q. Li, W.-B. Cai, Aqueous phase approach to Aumodified Pt–Co/C toward efficient and durable cathode catalyst of PEMFCs, *J. Phys. Chem. C*, 2021, **125**, 23821–23829.
- 3 H. J. Wang, H. J. Yu, Y. H. Li, , S. L. Yin, H. Xue, R. X. N. Li, X. You, L. Wang, Direct synthesis of bimetallic PtCo mesoporous nanospheres as efficient bifunctional electrocatalysts for both oxygen reduction reaction and methanol oxidation reaction, *Nanotechnology*, 2018, **29**, 175403.
- 4 Y. J. Wu, Y. G. Zhao, J. J. Liu, F. Wang, Adding refractory 5d transition metal W into PtCo system: an advanced ternary alloy for efficient oxygen reduction reaction, *J. Mater. Chem. A*, 2018, **6**, 10700-10709.
- 5 M. Kabiraz, B. Ruqia, J. Kim, H. Kim, Y. Hong, M. Kim, Y. Kim, C. Kim, W.-J. Lee, W. Lee, G. Hwang, H. Cheol Ri, H. Baik, H.-S. Oh, Y. Lee, L. Gao, H. Huang, S. Paek, Y.-J Jo, C. Choi, S. Han, S. Choi, Understanding the grain boundary behavior of bimetallic platinum–cobalt alloy nanowires toward oxygen electroReduction, *ACS Catal.*, 2022, **12**, 3516–3523.