Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electrochemical water oxidation catalyzed by a mononuclear cobalt complex of pentadentate ligand: the critical effect of borate anion

Haixia Zheng^{a,b}, Hui Ye^b, Tao Xu^b, Kaibo Zheng^{a*}, Xinyi Xie^c, Binghui Zhu^c, Xichao Wang^b, Junqi Lin^{b*}and Zhijun Ruan^{a,b*}

^a College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materials, China Three Gorges University, Yichang, 443002, China. Email: zhengkbo@126.com
^b Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China. Email: linjunqi@hgnu.edu.cn; ruanzhijun@hgnu.edu.cn
^c Institute for New Energy Materials & Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.

T 11 C1	C (11	1 . 1 /	1	•	· · · · ·	1 1
ahle NI	(rystalloorg	nhic data	and proce	ceino nara	meters for	complex I
	Orystunogit	ipme aaaa	and proce	ssing puru	meters for	complex I

Crystal data	
Chemical formula	$C_{19}H_{31}CoN_5O\cdot 2(ClO_4)$
$M_{ m r}$	603.32

Crystal system, space group	Monoclinic, $P2_1/c$		
Temperature (K)	273		
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.0629 (18), 33.221 (8), 8.842 (2)		
β (°)	104.732 (9)		
$V(Å^3)$	2574.6 (11)		
Ζ	4		
Radiation type	Μο Κα		
$\mu (mm^{-1})$	0.93		
Crystal size (mm)	0.22 x 0.20 x 0.17		
Data collection			
Diffractometer	Bruker APEX-II CCD		
Absorption correction	_		
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	29858, 5876, 4110		
R _{int}	0.069		
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.649		
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.064, 0.203, 1.04		
No. of reflections	5876		
No. of parameters	329		
H-atom treatment	H-atom parameters constrained		
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	1.35, -0.64		

Fig. S1 High-resolution mass spectrum of complex 1 in pure water, the m/z = 485.12065 is ascribed to $[Co(N3Py2)(ClO_4)]^+$ (calc. 485.12).

Fig. S2 Infrared spectrum of complex 1.

Fig. S3 The absorption spectrum of 10 mM of **1** before and after 10 h aging in 0. 1 M borate buffer solution at pH 9.0.

Fig. S4 CV curves of 1 mM of 1 in 0. 1 M borate buffer solution at pH 9.0 (black) and 0.1 M phosphate buffer solution at pH 9.0 (red). GC electrode as working electrode, scan rate = 100 mV/s.

Fig. S5 Ten consecutive CV cyclic scan curves of 1 mM complex 1 in borate buffer solution.

Fig. S6 CV of complex 1 with various concentrations in borate buffer solution at pH 9.0.

Fig. S7 Relationship between current of anodic wave and concentration of complex 1, scan rate = 100 mV/s, 0.1 M borate buffer solution at pH 9.0 as electrolyte.

Fig. S8 Relationship between current density at 1.45 V vs. NHE and concentration of complex 1, scan rate = 100 mV/s, 0.1 M borate buffer solution at pH 9.0 as electrolyte.

Fig. S9 Differential pulse voltammetry (DPV) examination of 1 mM complex **1** in 0.1 M borate buffer solution at various pH values.

Fig. S10 CV of 1.0 mM of 1 with various scan rates, 0.1 M borate buffer solution as electrolyte.

Fig. S11 Dependence of oxidation wave current density of the non-catalytic process of 1 mM of **1** on the square root of scan rates, 0.1 M borate buffer solution as electrolyte.

Fig. S12 Plots of the ratio of i_{cat} to i_{d} of complex 1 versus the reciprocal of the square root of scan rate.

Fig. S13 CV of 1.0 mM of **1** in borate buffer solution with various concentrations as electrolyte (pH 9.0). The ionic strength of electrolyte was maintained with the addition of NaClO₄.

Fig. S14 Picture of the two-compartment cell used for CPE experiments; 0.1 M borate buffer solution containing 1 mM complex 1 was used as electrolyte and potential was controlled at 1.45 V vs. NHE.

Fig. S15 The *i*-t curves obtained in CPE experiment of 1 mM of complex 1 at different potential (vs. NHE) using 0.1 M borate buffer at pH 9.0 as electrolyte and ITO electrode (1 cm \times 2 cm with 1 cm² immersed in electrolyte).

Fig. S16 Gas chromatographic trace before and after CPE test at 1.45 V vs. NHE.

Fig. S17 Faradaic efficiency of O_2 evolution for complex 1 under electrolysis of 4000 s at 1.45 V (vs. NHE) in 0.1 M borate buffer solution at pH 9.0.

Fig. S18 SEM images of the surface of ITO electrode before (top) and after (bottom) 4 h CPE experiments (1.45 V vs. NHE) of 1 mM of **1** in 0.1 M borate buffer solution at pH 9.0.

Fig. S19 EDX analysis of the surface of ITO electrode before (top) and after (bottom) 4 h CPE experiments of 1 mM of **1** in 0.1 M borate buffer solution at pH 9.0.

Fig. S20 UV-vis absorption spectra of 1 mM of **1** before and after the CPE test at 1.45 V vs. NHE.