Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022. ## **Electronic Supplementary Material** # A novel near-infrared fluorescent probe for the detection of sulfur dioxide derivatives and its application in biological imaging Wanheng Wei^a, Wenjie Liu^a, Hongyan Zhang^{b*}, Zhanxian Li^{a*}, Mingming Yu^{a*} - * Corresponding author. - ^a Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. E-mail: lizx@zzu.edu.cn, yumm@zzu.edu.cn. - ^b Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile, Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China. E-mail: zhyzzh@126.com. ### **Table of Contents** ### **Figures** Fig. S1 ¹H NMR spectrum of B1. Fig. S2 ¹³C NMR spectrum of B1. Fig. S3 ¹H NMR spectrum of B2. Fig. S4 ¹³C NMR spectrum of B2. Fig. S5 ¹H NMR spectrum of HBQI. Fig. S6 ¹³C NMR spectrum of HBQI. Fig. S7 High-resolution mass spectrum of probe HBQI. Fig. S8 High-resolution mass spectrum of the product of reaction between probe HBQI and HSO₃⁻. ## **Figures** Fig. S1 ¹H NMR spectrum of B1. Fig. S2 ¹³C NMR spectrum of B1. Fig. S3 1 H NMR spectrum of B2. Fig. S4 ¹³C NMR spectrum of B2. Fig. S5 1 H NMR spectrum of HBQI. Fig. S6 ¹³C NMR spectrum of HBQI. Fig. S7 High-resolution mass spectrum of probe HBQI. Fig. S8 High-resolution mass spectrum of the product of reaction between probe HBQI and HSO₃⁻.