Electronic Supplementary Information

Multifunctionality of the [C₂mim][Ln(fod)₄] series (Ln = Nd-Tm except Pm): Magnetic, Luminescent and Thermochemical studies

Ana C. Cerdeira¹, João P. Leal², João Avó³, Catarina Viola⁴, Maria H. Casimiro⁵, Luis M. Ferreira¹, Filipe A. A. Paz⁶, Laura C. J. Pereira^{1,*}, Cláudia C. L. Pereira^{4,*} and Bernardo Monteiro^{7,*}

- ¹ Centro de Ciências e Tecnologias Nucleares (C2TN), DECN, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, 2695-066 Bobadela, Portugal.
- ² Centro de Química Estrutural (CQE), Institute of Molecular Sciences, DECN, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, 2695-066 Bobadela, Portugal.
- ³ Associate Laboratory i4HB—Institute for Health and Bioeconomy and Institute for Bioengineering and Biosciences (IBB), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
- ⁴ LAQV-REQUIMTE, Dep. de Química, Universidade Nova de Lisboa,2829-516, Monte de Caparica, Portugal.
- ⁵ Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, 2695-066 Bobadela, Portugal.
- ⁶ Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
- ⁷ Centro de Química Estrutural (CQE), Institute of Molecular Sciences, DEQ, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, 2695-066 Bobadela, Portugal.
 - * Correspondence: <u>lpereira@ctn.tecnico.ulisboa.pt</u> (LCJP); <u>ccl.pereira@fct.unl.pt</u> (CCLP); <u>bernardo.monteiro@ctn.tecnico.ulisboa.pt</u> (BM).

Contents:

1) ESI-MS Studies	S2
1) FT-IR Studies	S8
2) Powder X-ray diffraction studies	S9
3) Thermogravimetric Studies	S10
4) Differential scanning calorimetry Studies	S11
5) Excitation spectra	S15
6) DC Measurements	S18
7) AC Measurements	S21

1) ESI-MS

ESI-MS analysis of compounds $[C_2mim][Eu(fod)_4]$ and $[C_2mim][Tb(fod)_4]$ were presented in ref. 10 and 29 of the main manuscript, respectively. Additionally, we made more 5 for control.

Figure S1. ESI-MS analysis of [C₂mim][Nd(fod)₄] in acetonitrile, negative mode.

Figure S2. Expanded ESI-MS analysis of [C₂mim][Nd(fod)₄] in acetonitrile, negative mode.

Figure S3. ESI-MS analysis of [C₂mim][Nd(fod)₄] in acetonitrile, positive mode.

Figure S4. ESI-MS analysis of [C₂mim][Sm(fod)₄] in acetonitrile, negative mode.

Figure S5. Expanded ESI-MS analysis of [C₂mim][Sm(fod)₄] in acetonitrile, negative mode.

Figure S6. ESI-MS analysis of [C₂mim][Sm(fod)₄] in acetonitrile, positive mode.

Figure S7. Expanded ESI-MS analysis of [C₂mim][Ho(fod)₄] in acetonitrile, negative mode.

Figure S8. Expanded ESI-MS analysis of [C₂mim][Ho(fod)₄] in acetonitrile, positive mode.

Figure S9. ESI-MS analysis of [C₂mim][Er(fod)₄] in acetonitrile, negative mode.

Figure S10. Expanded ESI-MS analysis of [C₂mim][Er(fod)₄] in acetonitrile, negative mode.

Figure S11. ESI-MS analysis of [C₂mim][Er(fod)₄] in acetonitrile, positive mode.

1) FT-IR

Figure S12. FT-IR spectra for compounds 2-9 in the 400 - 4000 cm⁻¹ range.

Figure S13. FT-IR spectra for compounds 2-9 in the 400 - 2000 cm⁻¹ range.

2) Powder X-ray diffraction studies

Figure S14. Powder X-ray diffraction patterns made with crystals of the Eu (3), Tb (5), Dy (6) and Er (8) compounds.

3) Thermogravimetry

Figure S15. (a) Thermogravimetric analysis for compounds **1,3-9** between 293 and 858 K and (b) the derivative of the weight change of the Thermogravimetric results.

4) Differential scanning calorimetry Studies

Figure S16. DSC analysis for the [C₂mim][Nd(fod)₄] (**1**) compound in the range 273-423 K with a scanning rate of 5 Kmin⁻¹ (green), 10 Kmin⁻¹ (red) and 50 Kmin⁻¹ (blue).

Figure S17. DSC analysis for the [C₂mim][Sm(fod)₄] (**2**) compound in the range 273-423 K with a scanning rate of 5 Kmin⁻¹ (green), 10 Kmin⁻¹ (red) and 50 Kmin⁻¹ (blue).

Figure S18. DSC analysis for the [C₂mim][Eu(fod)₄] (**3**) compound in the range 273-423 K with a scanning rate of 5 Kmin⁻¹ (green), 10 Kmin⁻¹ (red) and 50 Kmin⁻¹ (blue).

Figure S19. DSC analysis for the [C₂mim][Gd(fod)₄] (**4**) compound in the range 273-423 K with a scanning rate of 10 Kmin⁻¹.

Figure S20. DSC analysis for the [C₂mim][Tb(fod)₄] (5) compound in the range 273-423 K with a scanning rate of 10 Kmin⁻¹.

Figure S21. DSC analysis for the [C₂mim][Ho(fod)₄] (7) compound in the range 273-423 K with a scanning rate of 10 Kmin⁻¹.

Figure S22. DSC analysis for the [C₂mim][Er(fod)₄] (8) compound in the range 273-423 K with a scanning rate of 5 Kmin⁻¹ (green), 10 Kmin⁻¹ (red) and 50 Kmin⁻¹ (blue).

Figure S23. DSC analysis for the [C₂mim][Tm(fod)₄] (9) compound in the range 273-423 K with a scanning rate of 5 Kmin⁻¹ (green), 10 Kmin⁻¹ (red) and 50 Kmin⁻¹ (blue).

5) Excitation spectra

Figure S24. Excitation spectrum of the [C₂mim][Nd(fod)₄] (1) compound.

Figure S25. Excitation spectrum of the [C₂mim][Eu(fod)₄] (3) compound.

Figure S26. Excitation spectrum of the [C₂mim][Tb(fod)₄] (5) compound.

Figure S27. Excitation spectrum of the [C₂mim][Dy(fod)₄] (6) compound.

Figure S28. Excitation spectrum of the $[C_2mim][Tm(fod)_4]$ (9) compound.

6) DC Measurements

Figure S29. Field dependence of the magnetization at several temperatures for (left) [C₂mim][Gd(fod)₄] (**4**) and (right) [C₂mim][Tb(fod)₄] (**5**).

Figure S30. Field dependence of the magnetization at several temperatures for (left) [C₂mim][Dy(fod)₄] (6) and (right) [C₂mim][Ho(fod)₄] (7).

Figure S31. Field dependence of the magnetization at several temperatures for (left) [C₂mim][Er(fod)₄] (8) and (right) [C₂mim][Tm(fod)₄] (9).

Figure S32. Reduced magnetization plots for [C₂mim][Gd(fod)₄] (4).

Figure S33. Reduced magnetization plots for [C₂mim][Tb(fod)₄] (5).

Figure S34. Reduced magnetization plots for [C₂mim][Dy(fod)₄] (6).

Figure S35. Reduced magnetization plots for [C₂mim][Ho(fod)₄] (7).

Figure S36. Reduced magnetization plots for [C₂mim][Er(fod)₄] (8).

Figure S37. Reduced magnetization plots for [C₂mim][Tm(fod)₄] (9).

7) AC Measurements

Figure S38. Temperature dependence of the (left) real, χ' , and (right) imaginary, χ'' , components of the AC susceptibility for [C₂mim][Gd(fod)₄] (**4**), collected at different AC frequencies under a static field of H_{DC} = 0 G. H_{AC} = 1 Oe (925 Hz), 3 Oe (3125 Hz).

Figure S39. Temperature dependence of the (left) real, χ' , and (right) imaginary, χ'' , components of the AC susceptibility for [C₂mim][Gd(fod)₄] (**4**), collected at different AC frequencies under a static field of H_{DC} = 1500 G. H_{AC} = 1 Oe (925 Hz), 3 Oe (3125 Hz).

Figure S40. Temperature dependence of the (left) real, χ' , and (right) imaginary, χ'' , components of the AC susceptibility for [C₂mim][Gd(fod)₄] (**4**), collected at different AC frequencies under a static field of H_{DC} = 2500 G. H_{AC} = 1 Oe (925 Hz), 3 Oe (remaining frequencies).

Figure S41. Temperature dependence of the (left) real, χ' , and (right) imaginary, χ'' , components of the AC susceptibility for [C₂mim][Tb(fod)₄] (**5**), collected at AC frequency of 995 Hz under a static field of H_{DC} = 0 G. H_{AC} = 10 Oe.

Figure S42. Temperature dependence of the (left) real, χ' , and (right) imaginary, χ'' , components of the AC susceptibility for [C₂mim][Tb(fod)₄] (5), collected at different AC frequencies under a static field of H_{DC} = 2500 G. H_{AC} = 3 Oe.

Figure S43. Temperature dependence of the (left) real, χ' , and (right) imaginary, χ'' , components of the AC susceptibility for [C₂mim][Dy(fod)₄] (6), collected at AC frequency of 995 Hz under a static field of H_{DC} = 0 G. H_{AC} = 10 Oe.

Figure S44. Temperature dependence of the (left) real, χ' , and (right) imaginary, χ'' , components of the AC susceptibility for [C₂mim][Dy(fod)₄] (**6**), collected at several AC frequencies under a static field of H_{DC} = 1500 G. H_{AC} = 10 Oe.

Figure S45. Temperature dependence of the (left) real, χ' , and (right) imaginary, χ'' , components of the AC susceptibility for [C₂mim][Ho(fod)₄] (7), collected at AC frequency of 995 Hz under a static field of H_{DC} = 0 G. H_{AC} = 10 Oe.

Figure S46. Temperature dependence of the (left) real, χ' , and (right) imaginary, χ'' , components of the AC susceptibility for [C₂mim][Ho(fod)₄] (7), collected at different AC frequencies under a static field of H_{DC} = 1000 G. H_{AC} = 10 Oe.

Figure S47. Temperature dependence of the (left) real, χ' , and (right) imaginary, χ'' , components of the AC susceptibility for [C₂mim][Ho(fod)₄] (7), collected at AC frequency of 4995 Hz under a static field of H_{DC} = 1500 G. H_{AC} = 10 Oe.

Figure S48. Temperature dependence of the (left) real, χ' , and (right) imaginary, χ'' , components of the AC susceptibility for [C₂mim][Er(fod)₄] (8), collected at AC frequency of 995 Hz under a static field of H_{DC} = 0 G. H_{AC} = 10 Oe.

Figure S49. Temperature dependence of the (left) real, χ' , and (right) imaginary, χ'' , components of the AC susceptibility for [C₂mim][Er(fod)₄] (8), collected at several AC frequencies under a static field of H_{DC} = = 800 G. H_{AC} = 10 Oe.

Figure S50. Temperature dependence of the (left) real, χ' , and (right) imaginary, χ'' , components of the AC susceptibility for [C₂mim][Tm(fod)₄] (9), collected at different AC frequencies under a static field of H_{DC} = 0 G. H_{AC} = 10 Oe.

Figure S51. Temperature dependence of the (left) real, χ' , and (right) imaginary, χ'' , components of the AC susceptibility for [C₂mim][Tm(fod)₄] (9), collected at several AC frequencies under a static field of H_{DC} = 2500 G. H_{AC} = 3 Oe.

Figure S52. Frequency dependence of the (left) real, χ' , and (right) imaginary, χ'' , components of the AC susceptibility for [C₂mim][Gd(fod)₄] (**4**), collected at several temperature values under a static field of H_{DC} = 2500 G. H_{AC} = 3 Oe.

Figure S53. Frequency dependence of the (left) real, χ' , and (right) imaginary, χ'' , components of the AC susceptibility for [C₂mim][Dy(fod)₄] (**6**), collected at several temperature values under a static field of H_{DC} = 1500 G. H_{AC} = 10 Oe.

Figure S54. Frequency dependence of the (left) real, χ' , and (right) imaginary, χ'' , components of the AC susceptibility for [C₂mim][Er(fod)₄] (8), collected at several temperature values under a static field of H_{DC} = 800 G. H_{AC} = 10 Oe.

Figure S55. Frequency dependence of the (left) real, χ' , and (right) imaginary, χ'' , components of the AC susceptibility for [C₂mim][Tb(fod)₄] (5), collected at several temperature values under a static field of H_{DC} = 1500 G. H_{AC} = 3 Oe.

Figure S56. Frequency dependence of the (left) real, χ' , and (right) imaginary, χ'' , components of the AC susceptibility for [C₂mim][Tm(fod)₄] (**9**), collected at several temperature values under a static field of H_{DC} = 2500 G. H_{AC} = 3 Oe.

Figure S57. Relaxation times at different static fields for a) [C₂mim][Dy(fod)₄] (6), and b) ([EMIM][Er(fod)₄]) (8), at 3 K and H_{AC} = 10 Oe.

Assuming only an Orbach relaxation process, the obtained values for τ were plotted against the inverse of the temperature and fitted to the Arrhenius law (Eq. S1):

$$\tau(T) = \tau_0 \cdot e^{\left(\frac{U_{eff}}{k_B T}\right)}$$
(Eq. S1)

where τ_0 is the pre-exponential factor, U_{eff} is the relaxation energy barrier and k_B is the Boltzmann constant. As shown in Figure S47, the fit deviates from linearity at low temperatures being only valid at temperatures higher than 3 K for **4** and **8**, and higher than 2.8 K for **6**, with the following parameters: $U_{eff} = 13,06$ K with $\tau_0 = 6,44 \times 10^{-7}$ s (**4**), $U_{eff} = 12.19$ K with $\tau_0 = 1,87 \times 10^{-5}$ s (**6**), and $U_{eff} = 18.407$ K with $\tau_0 = 1,892 \times 10^{-6}$ s (**8**).

Figure S58. Thermal dependence of the relaxation time τ , measured using an AC field of H_{AC} = 3 Oe, 10 Oe and 10 Oe, and under a static field of H_{DC} = 2500 G, 1500 G and 800 G for (a) **4** ([C₂mim][Gd(fod)₄]), (b) **6** ([C₂mim][Dy(fod)₄]), and (c) **8** ([C₂mim][Er(fod)₄]), respectively. The lines are fits to the Arrhenius equation (eq. S1), assuming an Orbach process.

T (K)	α	τ (s)	χs (emu.mol ⁻¹)	χ_T (emu.mol ⁻¹)
2,5	0,23226	5,4329E-05	9,94754	25,01735
3	0,16657	4,5832E-05	8,87088	23,8067
3,5	0,17098	2,8207E-05	5,9053	21,19856
4	0,15493	1,9290E-05	4,59693	19,18636
4,5	0,11348	1,1311E-05	9,066E-14	16,79233
5	0,10962	8,7811E-06	9,194E-14	15,49594
5,5	0,12945	6,4656E-06	1,635E-14	14,04369
-				

Table S1. Generalized Debye model fitting parameters under a static field of H_{DC} = 2500 G, in the temperature range of 2.5 to 5.5 K, for [C₂mim][Gd(fod)₄] (4).

Table S2. Generalized Debye model fitting parameters under a static field of H_{DC} = 1500 G, in the temperature range of 1.6 to 8.7 K, for [C₂mim][Dy(fod)₄] (6).

T (K)	α	τ (s)	χs (emu.mol ⁻¹)	χ_T (emu.mol ⁻¹)
1.6	0,47369	0,00379	0,19863	5,98781
2.3	0,51683	0,0018	0,22144	4,35386
2.8	0,51889	0,00133	0,24906	3,94707
3.4	0,48861	0,000715	0,34175	3,40158
3.8	0,50252	0,000497	0,41104	3,0834
4.6	0,48283	0,000277	0,51827	2,67819
5.3	0,48866	0,000197	0,65402	2,44742
6.0	0,46541	0,000149	0,83673	2,19929
6,4	0,39597	0,000123	0,9966	1,9622
6.9	0,35718	0,000103	1,082	1,79996
7.3	0,27099	9,3E-05	1,16229	1,64757
7.8	0,20448	8,77E-05	1,19908	1,53277
8.3	0,13707	8,13E-05	1,2092	1,43096
8.7	0,12093	7,69E-05	1,19148	1,35295

T (K)ατ (s)χ s (emu.mol-1)χ τ (emu.mol-1)1.60,276870,002020,916763,705753.00,322860,0008980,654333,063943.10,329520,0007470,753113,016233.70,303770,0003060,651492,509214.40,371030,0001270,482682,071154.80,318048,77E-050,672341,879655.10,159636,74E-050,877241,596565.84,38E-174,52E-051,004451,362216.40,253083,24E-050,979641,226926.82,37E-152,8E-051,012281,149797.30,623281,62E-050,944781,10369					
1.60,276870,002020,916763,705753.00,322860,0008980,654333,063943.10,329520,0007470,753113,016233.70,303770,0003060,651492,509214.40,371030,0001270,482682,071154.80,318048,77E-050,672341,879655.10,159636,74E-050,877241,596565.84,38E-174,52E-051,004451,362216.40,253083,24E-050,979641,226926.82,37E-152,8E-051,012281,149797.30,623281,62E-050,944781,10369	T (K)	α	$\tau(s)$	χs (emu.mol ⁻¹)	χ_T (emu.mol ⁻¹)
3.00,322860,0008980,654333,063943.10,329520,0007470,753113,016233.70,303770,0003060,651492,509214.40,371030,0001270,482682,071154.80,318048,77E-050,672341,879655.10,159636,74E-050,877241,596565.84,38E-174,52E-051,004451,362216.40,253083,24E-050,979641,226926.82,37E-152,8E-051,012281,149797.30,623281,62E-050,944781,10369	1.6	0,27687	0,00202	0,91676	3,70575
3.10,329520,0007470,753113,016233.70,303770,0003060,651492,509214.40,371030,0001270,482682,071154.80,318048,77E-050,672341,879655.10,159636,74E-050,877241,596565.84,38E-174,52E-051,004451,362216.40,253083,24E-050,979641,226926.82,37E-152,8E-051,012281,10369	3.0	0,32286	0,000898	0,65433	3,06394
3.70,303770,0003060,651492,509214.40,371030,0001270,482682,071154.80,318048,77E-050,672341,879655.10,159636,74E-050,877241,596565.84,38E-174,52E-051,004451,362216.40,253083,24E-050,979641,226926.82,37E-152,8E-051,012281,149797.30,623281,62E-050,944781,10369	3.1	0,32952	0,000747	0,75311	3,01623
4.40,371030,0001270,482682,071154.80,318048,77E-050,672341,879655.10,159636,74E-050,877241,596565.84,38E-174,52E-051,004451,362216.40,253083,24E-050,979641,226926.82,37E-152,8E-051,012281,149797.30,623281,62E-050,944781,10369	3.7	0,30377	0,000306	0,65149	2,50921
4.80,318048,77E-050,672341,879655.10,159636,74E-050,877241,596565.84,38E-174,52E-051,004451,362216.40,253083,24E-050,979641,226926.82,37E-152,8E-051,012281,149797.30,623281,62E-050,944781,10369	4.4	0,37103	0,000127	0,48268	2,07115
5.10,159636,74E-050,877241,596565.84,38E-174,52E-051,004451,362216.40,253083,24E-050,979641,226926.82,37E-152,8E-051,012281,149797.30,623281,62E-050,944781,10369	4.8	0,31804	8,77E-05	0,67234	1,87965
5.84,38E-174,52E-051,004451,362216.40,253083,24E-050,979641,226926.82,37E-152,8E-051,012281,149797.30,623281,62E-050,944781,10369	5.1	0,15963	6,74E-05	0,87724	1,59656
6.40,253083,24E-050,979641,226926.82,37E-152,8E-051,012281,149797.30,623281,62E-050,944781,10369	5.8	4,38E-17	4,52E-05	1,00445	1,36221
6.82,37E-152,8E-051,012281,149797.30,623281,62E-050,944781,10369	6.4	0,25308	3,24E-05	0,97964	1,22692
7.3 0,62328 1,62E-05 0,94478 1,10369	6.8	2,37E-15	2,8E-05	1,01228	1,14979
	7.3	0,62328	1,62E-05	0,94478	1,10369

Table S3. Generalized Debye model fitting parameters under a static field of $H_{DC} = 800 \text{ G}$, in the temperature range of 1.6 to 7.3 K, for [C₂mim][Er(fod)₄] (8).