Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

A composite approach to synthesize highly performed Pt/WO₃-Carbon catalyst for optical

and electrocatalytic properties

Rabia Naeem,^{ab}, Saba Afzal,^c Muhammad Adil Mansoor,^d Khadija Munawar,^b Bibi Sherino,^c

Riaz Ahmed,^e

^aDepartment of Chemistry Government College University Lahore, Pakistan

^bDepartment of Chemistry, Faculty of Science University of Malaya, Kuala Lumpur Malaysia.

^cDepartment of Chemistry, Sardar Bahadur Khan Women's University Quetta, Pakistan

^dDepartment of Chemistry, School of Natural Sciences, National University of Sciences and

Technology (NUST), H-12 Campus, Islamabad, Pakistan

^eDepartment of Chemistry, Quaid-i-Azam University Islamabad-45320, Pakistan

corresponding email id: rabianaeem49@yahoo.com

Figure S1: FTIR spectra of as (a) received (b) purified and functionalized vulcan carbon

Figure S2: TGA and DTG of Pt-WO₃/C, Pt/WO₃, and Pt/C catalysts in air, heating rate 20 °C/min

Catalyst	%w/w Pt in	%w/w WO ₃ in	%w/w C in	ECSA	Peak current
	Catalyst	Catalyst	Catalyst	<i>m</i> ₂ /g	mA/cm ²
<i>PWC 1</i> <i>Pt/WO</i> ₃ - <i>C</i>	5	15	80	362	17
<i>PWC 2</i> <i>Pt/WO</i> ₃ - <i>C</i>	10	10	80	498	28
<i>PWC 3</i> <i>Pt/WO</i> ₃ - <i>C</i>	15	5	80	472	26
Pt/WO ₃	10	90	n/a	447	12
Pt/C	Pt	n/a	90	132	4

 Table S1:Optimization data of Catalysts with different composition having Electrochemical surface area (ECSA) and peak current

Figure S3: EDX spectra of Pt/WO3-C, Pt/WO3 and Pt/C

Figure S4: N₂ adsorption desorption isotherm and (a) pore size distribution curve of WO₃-C

Catalysts	С %	Pt %	W%	0 %	Total
Pt/WO ₃ -C	78.9	9.28	7.6	4.2	100
Pt/WO ₃		9.31	79	21.0	100
Pt/C	86.0	9.16		4.64	100

Table S2: Compositional analysis of catalysts from EDX results

Table S3: Electrochemical surface area, $Q_{Pt-H/C}$ and Roughness factor from CVs in 1M H₂SO₄ on Pt/WO3-C, Pt/WO3and Pt/C catalysts

Catalysts	Mass of	Q _{pt-H} / C	S _{ESA} /m ² ·g ⁻¹	RSA (cm ²)	Roughness
	Pt/mg				Factor
Pt/C	0.16	4460	132	21.24	27.10
Pt/WO ₃	0.16	15019	447	71.52	91.10
Pt/WO ₃ -C	0.16	16750	498	79.76	101.60

Table S4: Activity parameters evaluated from CVs in $1M CH_3OH + 1M H_2SO_4$ on various Pt/WO3-C, Pt/WO3and Pt/C catalysts.

Catalysts	Peak potential Ep/V	Peak Current Ip/(mA)	Specific activity I _s /mA·cm ⁻²	Mass activity I _m /mA·mg ⁻¹ Pt
Pt/C	0.670	4.87	6.20	30.4
Pt/WO ₃	0.695	12.07	15.4	75.4
Pt/WO ₃ -C	0.736	28.75	36.6	180

Table S5: Polarization data evaluated from Tafel plots in 1M CH₃OH + 1M H₂SO₄

Catalysts	Tafel's slope"b" /(V decade ⁻¹)	αn _α	Intercept of E vs Log í	í ⁰ mA∙cm ⁻²
Pt/C	0.178	0.331	1.049	5.65
Pt/WO ₃	0.321	0.184	1.156	33.8
Pt/WO ₃ -C	0.330	0.179	1.176	34.4

Table S6: Activity parameters evaluated from CVs in 1M CH₃OH + 1M KOH on Pt/WO₃-C, Pt/WO₃, Pt/C catalysts

Catalysts	Peak potential	Peak Current	Specific activity	Mass activity
	E _p /V	I _p /(mA)	j/mA·cm ⁻²	mA/g Pt
Pt/C	-0.153	26.37	33.592	165
Pt/WO ₃	-0.136	27.61	35.172	172
Pt/WO ₃ -C	-0.126	43.0	54.777	269

Catalysts	Tafel's slope"b" /(V decade ⁻¹)	αn _α	Intercept of E vs Log í	í ⁰ mA∙cm ⁻²
Pt/C	0.2107	0.2806	0.0402	41.50
Pt/WO ₃	0.3139	0.1885	0.2180	51.26
Pt/WO ₃ -C	0.2859	0.2068	0.1211	60.13

Table S7: Polarization data evaluated from Tafel plots in 1M CH₃OH + 1MKOH.

Table S8: Rate constants of 1MCH₃OH in basic medium.

Catalysts	Peak Current	Rate Constant
	Ip/(mA)	k _{het} /cm.s ⁻¹ * 10 ⁻⁵
Pt/C	26.37	15.7
Pt/WO ₃	27.61	16.1
Pt/WO ₃ -C	43.0	22.4

Table S9: BET specific surface area and pore volume and pore diameter of WO₃-C, WO₃ and C

Catalyst Support	BET surface(m ² g ⁻¹)	Total pore volume(cm ³ g ⁻¹)	Average pore diameter(nm)
WO ₃ -C	117.75	0.10	4.86 (This work)
WO ₃	76.05	0.189	11.6[1, 2]
С	235	0.67	5.28[3]

References

[1] M. Ikram, M.M. Sajid, Y. Javed, A.M. Afzal, N.A. Shad, M. Sajid, K. Akhtar, M.I. Yousaf, S.K. Sharma, H. Aslam, Crystalline growth of tungsten trioxide (WO3) nanorods and their development as an electrochemical sensor for selective detection of vitamin C, Journal of Materials Science: Materials in Electronics, 32 (2021) 6344-6357.

[2] L. Horiean, T. Sakonwaree, N. Sirichaiwattananun, P. Rangsunvigit, M. Termtanun, Photodegradation of S-metolachlor using metal oxide doped tungsten oxide under visible light, Science, Engineering and Health Studies, (2021) 21040004-21040004.

[3] T. Maiyalagan, T.O. Alaje, K. Scott, Highly stable Pt–Ru nanoparticles supported on threedimensional cubic ordered mesoporous carbon (Pt–Ru/CMK-8) as promising electrocatalysts for methanol oxidation, The Journal of Physical Chemistry C, 116 (2012) 2630-2638.