Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Cucurbit[*n*]urils-based host-guest interaction enhancing organic room-temperature phosphorescence of phtalic anhydride derivatives in aqueous solution

Tianyue Xu,^a Fengbo Liu,^a Xianchen Hu,^a Zhiyong Zhao,^{a,b} Simin Liu^{*a,b}

^a School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China. E-mail: <u>liusimin@wust.edu.cn</u>

^b The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China.

Table of Contents	Page
General experimental section	 S2
Synthesis of G1-G3 guest molecules	 S3-S4
¹ H NMR spectra of G2 with addition of CB[8], ESI-MS of complexation of G2 with CB[8, 10], ITC data of G2 with CB[8]	 S5-S6
¹ H NMR titration of G1 with CB[8, 10], ITC data of G1 with CB[8]	 S7-S8
¹ H NMR spectra of G3 with addition of CB[8, 10], ITC data of G3 with CB[8]	 S8-S10
Photophysical properties spectra of G1-G2 and their complexes with addition of CB[8, 10] in water	 S10-S13
Photophysical properties spectra of G3 and their complexes with addition of CB[8, 10]	 S14-S15
UV-Vis spectra of G1-G3 and their complexes with CB[8, 10] in water	 S15-S18
¹ H and ¹³ C NMR spectra of G1-G3	 S18-S24
References	S24

General Experimental Section.

CB[8] and CB[10] were prepared by the corresponding literature procedures.^{1,2} Other compounds used in this study were purchased from commercial suppliers and were used without further purification. NMR spectra (¹H, ¹³C) were collected on Agilent 600 MHz DD2 spectrometers. Mass spectrometry was performed using a Bruker FT-ICR Apex IV qQ equipped 12T super conducting magnet. UV/Vis were performed on a SHIMADZU UV-3600 instrument with 1 cm pathlength cells at 298 K. ITC data was measured using TA NANO ITC instrument. Photoluminescence spectra were measured on a PerkinElmer LS-55 machine. Phosphorescence lifetime was recorded using a FS5 instrument (Edinburg instruments, Livingstone, UK). A Suprasil Quartz (QS) cuvette with 1 cm path length was used for all measurements. The data was fitted with the exponential reconvolution function and the non-linear least square method.

Synthesis and characterization

Scheme S1. Synthesis route of phtalic anhydride derivates G1-G3.

Synthesis of G1-G3 were modified from previously reported procedures.^{3,4}

4,8-dibromo-2,6-bis(2-(dimethylamino)ethyl)pyrrolo[3,4-f]isoindole-1,3,5,7(2H,6H)-tetraone (**1a**) Compound **1** (0.187 g, 0.5 mmol) and 2-dimethylaminoethylamine (0.176 g, 2 mmol) were added in acetic acid (30 ml), the mixture was refluxed for 6 h in oil bath. The resultant solution was extracted with dichloromethane, and then organic phase was evaporated under reduced pressure and then purified by silicagel column chromatography(dichloromethane/methanol=50:1) to afford **1a** (73 mg, 28%) as pink solid. ¹H NMR (600 MHz, CDCl₃) δ (ppm): 3.84 (t, *J* = 6.0 Hz, 2H), 2.60 (t, *J* = 6.6 Hz, 2H), 2.26 (s, 6H).

5-bromo-2-(2-(dimethylamino)ethyl)isoindoline-1,3-dione (2a)

Compound **2** (0.226 g, 1 mmol) and 2-dimethylaminoethylamine (0.176 g, 2 mmol) were added in acetic acid (30 ml), the mixture was refluxed for 6 h in oil bath. The resultant solution was extracted with dichloromethane, and then organic phase was evaporated under reduced pressure and then purified by silicagel column chromatography (dichloromethane/methanol=50:1) to afford **2a** (172 mg, 58%) as yellow solid. ¹H NMR (600 MHz, DMSO-d₆) δ (ppm): 8.04 (s, 1H), 8.01 (d, J = 7.8 Hz, 1H), 7.78 (d, J = 8.4 Hz, 1H), 3.64 (t, J = 6.6 Hz, 2H), 2.44 (t, J = 6.6 Hz, 2H), 2.12 (s, 6H).

4-bromo-2-(2-(dimethylamino)ethyl)isoindoline-1,3-dione (3a)

Compound **3** (0.226 g, 1 mmol) and 2-dimethylaminoethylamine (0.176 g, 2 mmol) were added in acetic acid (40 ml), the mixture was refluxed for 6 h in oil bath. The resultant solution was extracted with dichloromethane, and the organic phase was evaporated under reduced pressure and then purified by silicagel column chromatography (dichloromethane/methanol=50:1) to afford **3a**

(146 mg, 49%) as white solid. ¹H NMR (600 MHz, CDCl₃) δ (ppm): 7.98 (d, J = 2.4 Hz, 1H), 7.85 (d, J = 7.8 Hz, 1H), 7.71 (d, J = 8.4 Hz, 1H), 4.01 (t, J = 7.8 Hz, 2H), 3.15 (t, J = 6.6 Hz, 2H), 2.71 (s, 6H).

2,2'-(4,8-dibromo-1,3,5,7-tetraoxo-5,7-dihydropyrrolo[3,4-f]isoindole-2,6(1H,3H)-diyl)bis(N,N,N-trimethylethan-1-aminium) (G1)

To a solution of DCM (30 ml) was added compound **1a** (51 mg, 0.1 mmol), methyl iodide (1 ml) was then added, the mixture was refluxed for 24 h in oil bath. The resultant solution was cooled to room temperature and evaporated under reduced pressure, the residue was washed by DCM for three times and dried at 60 °C in vacuum. The solid was dissolved in H₂O, added KPF₆ and the precipitate was centrifuged, washed by H₂O for three times. The solid was dissolved in CH₃CN and Bu₄N⁺Cl⁻ was added, the precipitate was washed by CH₃CN for three times to afford **G1** (31 mg, 51%) as pink-white solid. ¹H NMR (600 MHz, D₂O) δ (ppm): 4.12 (t, *J* = 7.2 Hz, 2H), 3.56 (t, *J* = 6.6 Hz, 2H), 3.14 (s, 9H). ¹³C NMR (151 MHz, D₂O) δ (ppm): 164.4, 136.3, 109.9, 62.0, 53.3, 32.2. HRMS (ESI): m/z [M-2Cl⁻]²⁺ calcd. for C₂₀H₂₆Br₂N₄O₄²⁺: 272.0159, found: 272.0154.

Products G2 and G3 were synthesized via the same procedures as G1.

2-(5-bromo-1,3-dioxoisoindolin-2-yl)-N,N,N-trimethylethan-1-aminium chloride (G2)

Faint yellow solid (89 mg, 63%). ¹H NMR (600 MHz, D₂O) δ (ppm): 7.97 (s, 1H), 7.91 (d, *J* = 7.8 Hz, 1H), 7.68 (d, *J* = 8.4 Hz, 1H), 4.05 (t, *J* = 7.2 Hz, 2H), 3.54 (t, *J* = 6.6 Hz, 2H), 3.11 (s, 9H). ¹³C NMR (151 MHz, D₂O) δ (ppm): 168.8, 168.2, 137.8, 132.9, 129.9, 129.1, 126.8, 125.0, 62.4, 53.2, 31.8. HRMS (ESI): *m*/*z* [M-2Cl⁻]¹⁺ calcd. for C₁₃H₁₆BrN₂O₂¹⁺: 311.0389, found: 311.0389.

2-(4-bromo-1,3-dioxoisoindolin-2-yl)-N,N,N-trimethylethan-1-aminium chloride (G3)

White solid (92 mg, 65%). ¹H NMR (600 MHz, D₂O) δ (ppm): 7.84 (d, *J* = 8.4 Hz, 1H), 7.75 (d, *J* = 7.8 Hz, 1H), 7.57 (t, *J* = 7.8 Hz, 1H), 4.07 (t, *J* = 6.6 Hz, 2H), 3.56 (t, *J* = 7.2 Hz, 2H), 3.13 (s, 9H). ¹³C NMR (151 MHz, D₂O) δ (ppm): 167.9, 167.6, 139.4, 135.9, 133.4, 128.9, 122.9, 118.1, 62.4, 53.3, 31.8. HRMS (ESI): *m*/*z* [M-2Cl⁻]¹⁺ calcd. for C₁₃H₁₆BrN₂O₂¹⁺: 311.0389, found: 311.0389.

Figure S1. ESI-MS spectral of compound **G2** with 1 equiv. of CB[10]. The ion at m/z = 1142.28 which corresponds to the 1:2 complex CB[10] 2**G2** ([CB[10] + 2**G2**¹⁺]²⁺ = 1142.29) was observed.

Figure S2. ¹H NMR spectra recorded(600 MHz, D₂O, 298K) for compound **G2** (1.0 mM) with addition of different equivalences of CB[8]: (a) 0, (b) 0.1, (c) 0.2, (d) 0.3, (e) 0.4, (f) 0.5, (g) 0.6, (h) 0.7, (i) 0.8, (j) 0.9, (k) 1.0.

Figure S3. ESI-MS spectral of compound **G2** with 1 equiv. of CB[8]. The ion at m/z = 976.23 which corresponds to the 1:2 complex CB[8] 2**G2** ([CB[8] + 2**G2**¹⁺]²⁺ = 976.23) was observed.

Figure S4. The ITC data for G2 with CB[8] in water.

5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.1

Figure S5. ¹H NMR spectra recorded(600 MHz, D₂O, 298K) for compound **G1** (1.0 mM) upon titration of different amounts of CB[10]: (a) 0, (b) 0.1, (c) 0.2, (d) 0.3, (e) 0.4, (f) 0.5, (g) 0.6, (h) 0.7, (i) 0.8, (j) 0.9, (k) 1.0 equiv.

5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0

Figure S6. ¹H NMR spectra recorded (600 MHz, D_2O , 298K) for compound **G1** (1.0 mM) with addition of different equivalences of CB[8] (a) 0, (b) 0.5, (c) 1.0.

Figure S7. The ITC data of G1 with CB[8] in water.

Figure S8. ¹H NMR spectra recorded (600 MHz, D_2O , 298K) for compound **G3** (1.0 mM) with addition of different equivalences of CB[8]: (a) 0, (b) 0.1, (c) 0.2, (d) 0.3, (e) 0.4, (f) 0.5, (g) 0.6, (h) 0.7, (i) 0.8, (j) 0.9, (k) 1.0.

Figure S9. The ITC data of G3 with CB[8] in water.

Tuble 51. Dinang constants of 61 66 with CD[6].			
Guest	Host	Binding constant (M ⁻¹)	
G1	CB[8]	8.85×10^{3}	
G2	CB[8]	4.27×10^{5}	
G3	CB[8]	4.02×10^{5}	

Table S1. Binding constants of G1-G3 with CB[8].

Figure S10. ¹H NMR spectra recorded(600 MHz, D₂O, 298K) for compound **G3** (1.0 mM) with addition of different equivalences of CB[10]: (a) 0, (b) 0.1, (c) 0.2, (d) 0.3, (e) 0.4, (f) 0.5, (g) 0.6, (h) 0.7, (i) 0.8, (j) 0.9, (k) 1.0.

Figure S11. Phosphorescence spectra (delayed by 10 μ s, slit width: $e_x = 10$ nm, $e_m = 5$ nm) of G1 under air and N₂ atmosphere.

Figure S12. Phosphorescence lifetime decay curves of G1 (a) under ambient condition; (b) under N_2 atmosphere and of G1 with CB[10] (c) under ambient condition; (d) under N_2 atmosphere.

Figure S13. Photoluminescence spectra of G1 (50 μ M) with addition of different equiv. of CB[8] in water ($\lambda_{ex} = 340$ nm; slit width: $e_x = 10$ nm, $e_m = 5$ nm).

Figure S14. Phosphorescence lifetime decay curves of G1 with CB[8] (a) under ambient condition ; (b) under N_2 atmosphere.

Figure S15. Phosphorescence spectra (delayed by 20 μ s, slit width: $e_x = 10$ nm, $e_m = 5$ nm) of G2 under air and N₂ atmosphere.

Figure S16. Phosphorescence lifetime decay curves of G2 (a) under ambient condition; (b) under N_2 atmosphere and of CB[8] G2 complex (c) under ambient condition; (d) under N_2 atmosphere.

Figure S17. Phosphorescence lifetime decay curves of G2 (a) under ambient condition and of CB[10] G2 complex (b) under ambient condition; (c) under N_2 atmosphere.

Figure S18. Phosphorescence spectra (delayed by 30 μ s, slit width: $e_x = 10$ nm, $e_m = 5$ nm) of G3 under air and N₂ atmosphere.

Figure S19. Photoluminescence spectra (λ_{ex} = 319 nm; slit width: e_x = 10 nm, e_m = 5 nm) of G3 (50 µM) with different equivalences of CB[8] (0 - 1.0 equiv) in water.

Figure S20. Photoluminescence spectra (λ_{ex} = 319 nm; slit width: e_x = 10 nm, e_m = 5 nm) of G3 (50 µM) with different ratios of CB[10] (0 - 1.0 equiv) in water.

Figure S21. UV-Vis absorption spectra of G1 (50 µM) with addition of different equiv. of CB[8].

Figure S22. UV-Vis absorption spectra of G1 (50 µM) with addition of different equiv. of CB[10].

Figure S23. UV-Vis absorption spectra of G2 (50 µM) with addition of different equiv. of CB[8].

Figure S24. UV-Vis absorption spectra of G2 (50 µM) with addition of different equiv. of CB[10].

Figure S25. UV-Vis absorption spectra of G3 (50 μ M) with addition of different equiv. of CB[8].

Figure S26. UV-Vis absorption spectra of G3 (50 µM) with addition of different equiv. of CB[10].

Figure S27. 1 H NMR spectra recorded (600 MHz, CDCl₃, 298K) for compound 1a (1.0 mM) .

Figure S30. HRMS (ESI) spectrum of G1.

Figure S31. ¹H NMR spectra recorded (600 MHz, DMSO, 298K) for compound 2a (1.0 mM).

Figure S32. ¹H NMR spectra recorded (600 MHz, D₂O, 298K) for compound G2 (1.0 mM).

Figure S33. $^{13}\!C$ NMR spectra recorded (600 MHz, D2O, 298K) for compound G2 .

Figure S35. 1 H NMR spectra recorded (600 MHz, CDCl₃, 298K) for compound 3a (1.0 mM) .

Figure S36. ¹H NMR spectra recorded (600 MHz, D₂O, 298K) for compound G2 (1.0 mM).

Figure S37. ¹³C NMR spectra recorded (600 MHz, D₂O, 298K) for compound G3.

Figure S38. HRMS (ESI) spectrum of G3.

Reference

1 Day, A.; Arnold, A.P.; Blanch, R.J.; Snushall, B. Controlling factors in the synthesis of cucurbituril and its homologues. *J. Org. Chem.* **2001**, *66*, 8094–8100.

2 Yang, X.; Zhao, Z.; Zhang, X.; Liu, S. Probing guest compounds enabling the facile isolation of cucurbit[10]uril. *Sci. China. Chem.* **2018**, *61*, 787–791.

3 Guo, X.; Kim, F.S.; Jenekhe, S.A.; Watson, M.D. Phthalimide-based polymers for high performance organic thin-film transistors. *J. Am. Chem. Soc.* **2009**, *131*, 7206-7207.

4 Chen, D.; Zhao, Y.; Zhong, C.; Gao, S.; Yu, G.; Liu, Y.; Qin, J. Effect of polymer chain conformation on field-effect transistor performance: synthesis and properties of two arylene imide based D–A copolymers. *J. Mater. Chem.* **2012**, *22*, *14639*.