Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

A Rhodamine-TPE Scaffold-Based Fluorescent Probe for Visualizing

Phosgene with a Portable Smartphone via Test TLC Strips

Shuai Yin, Shishen Zhang, and Yifeng Han*

Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China. E-mail: <u>zstuchem@gmail.com</u> (Yifeng Han); Tel: +86-751-86843550;

Contents

Additional spectroscopic data	··S3
The characterization data of TPE-RhodEA	·S18
References	·S21

Additional spectroscopic data

Fig. S1 UV-Vis absorption spectra of TPE-RhodEA (10.0 μ M) in CH₃CN solution (containing 1% TEA) in the presence of different concentrations of phosgene (0-3.0 equiv.).

Fig. S2 The absorbance of UV-Vis absorption spectra of TPE-RhodEA (10.0 μ M) at 556 nm (A₅₅₆) as a function of phosgene concentration (0.3-0.8 equiv.) in CH₃CN solution (containing 1% TEA).

Fig. S3 The ratio of the fluorescent intensity of TPE-RhodEA (10.0 μ M) at 456 nm (I₄₅₆) and 580 nm (I₅₈₀), I₅₈₀/I₄₅₆, as a function of phosgene concentration (0-3.0 equiv.) under the same condition as the phosgene titration.

Fig. S4 The change of the ratio of the fluorescent intensity of TPE-RhodEA at 456 nm and 580 nm, I_{580}/I_{456} , as a function of phosgene concentration (0.3-0.8 equiv.) under the same condition as the phosgene titration.

The detection limit (DL) of phosgene using **TPE-RhodEA** was determined from the following equation: ¹

$$DL = 3*\sigma/K$$

Where σ is the standard deviation of the blank solution; K is the slope of the calibration curve.

Fig. S5 Fluorescence spectra of TPE-RhodEA (10.0 μ M) before and after addition of various analytes (including acetic anhydride (AA), acetyl chloride (AcCl), oxalyl chloride (OCl), thionyl chloride (SOCl₂), sulfone chloride (SO₂Cl₂), phosphorus oxychloride (POCl₃), diethyl chlorophosphate (DCP), *p*-toluenesulfonyl chloride (TsCl), triphosgene, and phosgene, (in CH₃CN solution, containing 1% TEA, λ ex = 400 nm).

Fig. S6 The change of the fluorescent intensity of TPE-RhodEA (10.0 μ M) in the present of 1 equiv. of phosgene at 456 nm (I₄₅₆) and 580 nm (I₅₈₀), respectively, as a function of reaction time (0-10 min) under the same condition as the phosgene titration.

Structures	Response type	LOD	Time (in solution)	Time (in gas phase)	Refs
но стран	off-on	18 nM	-	-	2
	ratiometric	0.14 ppm	4 min	10 min	3
	ratiometric	27 nM	2 min	10 min	4
	ratiometric	0.14 µM	30 s	5 min	5
$\square \square $	ratiometric	5.3 nM	50 s	10 min	6
	ratiometric	6.7 nM	200 s	1 min	7
	ratiometric	12 nM	1.5 s	1 min	8
	off-on	0.3 nM	60 s	1 s	9
	off-on	0.48 nM	20 min	20 min	10
	off-on	6.3 nM	15 min	5 min	11
H ₂ N ₄ O	off-on	5.56 nM	1.5 min	10 min	12
H ₂ N HN O HV Bu	ratiometric	0.09 nM	20 s	1 min	13
NOH NOH	off-on	0.12 μΜ	1 min	10 s	14
	off-on	3.3 nM	30 s	10 min	15

Table S1 The performance comparison of the probe with other reported phosgene sensors.

	ratiometric	0.36 µM	6 s	2 min	16
NH NH2	ratiometric	4.9 nM	12 min	5 min	17
	off-on	3 nM	30 s	5 min	18
$HN \xrightarrow{F'} F \xrightarrow{NH} NH_2$	ratiometric	2.36 nM	2 min	30 s	19
	off-on	24 ppm	3 s	30 s	20
	off-on	1.2 nM	20 s	5 min	21
	off-on	1.65 nM	200 s	5 min	22
	ratiometric	0.54 ppm	2 min	2 min	This work

Fig. S7 Fluorescence spectra of TPE-RhodEA in THF and THF/water mixtures with different water fractions (f_w %); [TPE-RhodEA] = 10 μ M; $\lambda ex = 365$ nm.

Fig. S8 Plot of relative fluorescence intensity of TPE-RhodEA at 479 nm versus the solvent composition of THF/water mixture. Inset: Photographs of TPE-RhodEA in different water fractions of H_2O/THF (from 0 to 99%, v/v) taken under UV light (365 nm).

Fig. S9 Tyndall effect test of TPE-RhodEA in THF and H_2O/THF (99 : 1, v/v).

Fig. S10 Fluorescence spectra of Rhod-EA (10.0 µM) in CH₃CN solution (containing 1% TEA)

Fig. S11 In situ ¹H NMR titration experiments of the probe in the presence of phosgene in CDCl₃. a) The probe alone; b) Add 1 equivalent of phosgene to the probe solution after 1 minute; c) Add 1 equivalent of phosgene to the probe solution after 10 minutes.

Fig. S12 The HR-MS spectrum of TPE-RhodEA-phosgene mixture solution.

Fig. S13 The probe-loaded TLC test strips response for various analytes (including acetic anhydride (AA), acetyl chloride (AcCl), oxalyl chloride (OCl), thionyl chloride (SOCl₂), sulfone chloride (SO₂Cl₂), phosphorus oxychloride (POCl₃), diethyl chlorophosphate (DCP), p-toluenesulfonyl chloride (TsCl), triphosgene, and phosgene) (the photo was taken using a smartphone under a 365 nm hand-held UV lamp).

The characterization data of TPE-RhodEA

¹H NMR of **1 (RhodBr-EA)**

¹H NMR of **3** (4,4,5,5-tetramethyl-2-(4-(1,2,2-triphenylvinyl)phenyl)-1,3,2-dioxaborolane)

¹³C NMR of **4 (TPE-RhodEA)**

HR-MS of 4 (TPE-RhodEA)

References

- (a) J. T. Yeh, P. Venkatesan and S. P. Wu, New J. Chem., 2014, 38, 6198-6204. (b) A. Roy, D.
 Kand, T. Saha and P. Talukdar, Chem. Commun., 2014, 50, 5510-5513.
- 2 P. Kundu, K. C.Hwang, Anal. Chem., 2012, 84, 4594-4597.
- 3 L. Chen, D. Wu, J. M. Kim, et al., Anal. Chem., 2017, 89, 12596-12601.
- 4 W. Feng, S. Gong, E. Zhou, et al., Anal. Chim. Acta, 2018, 1029, 97-103.
- 5 C. Wu, H. Xu, Y. Li, et al., *Talanta*, 2019, **200**, 78-83.
- 6 Z. J. Li, W. J. Zhang, W. Z. Bi, et al., RSC Adv., 2021, 11, 10836-10841.
- 7 J. Y. Ni, D. L. Qian, R. Sun, et al., *Talanta*, 2022, 236, 122826.
- 8 Y. Zhang, A. Peng, X. Jie, et al., ACS Appl. Mater. Inter., 2017, 9, 13920-13927.
- 9 S. L. Wang, C. L. Zhang, Q. H. Song, J. Mater. Chem. C, 2019, 7, 1510-1517.
- 10 L. Bai, W. Feng, G. Feng, Dyes Pigment., 2019, 163, 483-488.
- 11 Y. L. Huang, W. Ye, Y. T. Su, et al., Dyes Pigment., 2020, 173, 107854-107860.
- 12 A. Gangopadhyay, S. S. Ali, A. K. Mahapatra, ChemistrySelect, 2019, 4, 8968-8972.
- 13 P. Liu, N. Liu, C. Liu, et al., Dyes Pigment., 2019, 163, 489-495.
- 14 S. Paul, P. Ghosh, P. Roy, New J. Chem., 2020, 44, 5784-5791.
- 15 L. Yang, F. Wang, Z. Sun, et al., Anal. Method., 2020, 12, 3123-3129.
- 16 Q. Hu, Q. Huang, K. Liang, et al., Dyes Pigment., 2020, 176, 108229-108237.
- 17 Z. Xu, Y. Luo, Y. Hong, et al., Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2022, 269, 120789-120795.
- 18 H. C. Xia, X. H. Xu, Q. H. Song, ACS sens., 2017, 2, 178-182.
- 19 T. Cao, D. Gong, L. Zheng, et al., Anal. Chim. Acta, 2019, 1078, 168-175.
- 20 T. I. Kim, D. Kim, J. Bouffard, et al., Sens. Actuat. B Chem., 2019, 283, 458-462.
- 21 L. Yang, Z. Sun, Z. Li, et al., Anal. Method., 2019, 11, 4600-4608.
- 22 L. Patra, K. Aich, S. Gharami, et al., Sens. Actuat. B Chem., 2021, 326, 128837-128843.