Rational design of a 3D net-like carbon based Mn₃O₄ anode material with an enhanced lithium storage performance

Xue Li^a, Wence Yue^a, Wen biao Li^a, Jie Zhao^a, Yu jiao Zhang^a, Yibo Gao^a, Ning

Gao^a, Dan Feng^a, Bin Wu^{b, c*}, Bao Wang^{a, d*}

^a State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese

Academy of Science, Beijing, 100190, P. R. China

^b Young Investigator Group Nanoscale Solid-Liquid Interfaces, Helmholtz-Zentrum Berlin für

Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany

^c Institute of Physics, Humboldt University Berlin, Newton-Straße 15, 12489 Berlin, Germany

^d College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences,

Beijing, 100000, P. R. China

* Corresponding authors.

Email address: bin.wu@helmholtz-berlin.de (B. Wu), baowang@ipe.ac.cn (B. Wang).

Fig. S1. TG curve of Mn₃O₄/CP composite.

Fig. S2. Raman spectrum of Mn_3O_4/CP composite.