Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

SUPPLEMENTARY MATERIALS

Synthesis of organic phosphoric acid-based multilayer SERS

imprinted sensor for selective detection of dichlorophenol

Hongji Li^{a,b*}, Hongda Xu^b, Jinyue Zhang^b, Yi Li^c, Haochen Yu^b, Yibo Zhao^b, Dandan Wang^{a,b*}, Yunhui Li^{c,d}, Jianwei Zhu^d

^aKey Laboratory of Preparation and Applications of Environmental Friendly Materials

(Jilin Normal University), Ministry of Education, Changchun, 130103, China.

^bCollege of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China.

^cSchool of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.

^dZhong shan Institute of Changchun University of Science and Technology, Zhongshan, 528403, China

E-mail address of the corresponding author: Hongji Li: jlsdlhj@163.com

Dandan

Wang:

dandanwang@jlnu.edu.cn

The calculated process was presented as following:

$$G = I_{SERS} / I_{REF}$$
(1)

 $EF = (I_{SERS} / N_{SERS}) / (I_{REF} / N_{REF})$ ⁽²⁾

$$N_{SERS} = CVN_A A_{Raman} / A_{sub} \tag{3}$$

(4)

$$N_{REF} = phA_{Raman}N_A/M$$

where I_{SERS} and I_{REF} were the SERS and Raman scattering spectra of 2,6-DCP under the same conditions. N_{SERS} and N_{REF} were the number of 2,6-DCP molecules inside the laser radiation. *C* was the corresponding concentration of 2,6-DCP used in the Raman spectra, *V* was the volume of the droplet, N_A was Avogadro constant. A_{Raman} was the laser spot area of Raman scanning. The calculation results were as follows that N_{SERS} was 2.36×10³ and N_{REF} was 1.02×10¹¹. Accordingly, The G and EF at 1596 cm⁻¹ were respectively 10.8 and 4.67×10⁸ for the 2,6-DCP solution, indicating that the substrate had considerably good SERS activity. This might be because on the one hand IP₆ and MIL-101 (Fe) shell layer play a protective effect on Ag nanoparticles, preventing Ag nanoparticles from being oxidized during the detection process, and on the other hand, because MIL-101 (Fe) had a good the adsorption capacity and could adsorb the target analyte to the active site of Ag nanoparticles. Therefore, AIM@MIPs substrate showed superior SERS activity to 2,6-DCP detection.

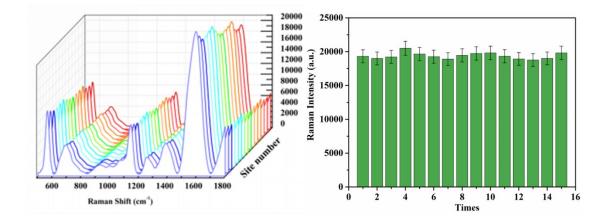


Figure S1. Raman intensity at 1596 cm⁻¹ with 15 different points on the same substrate

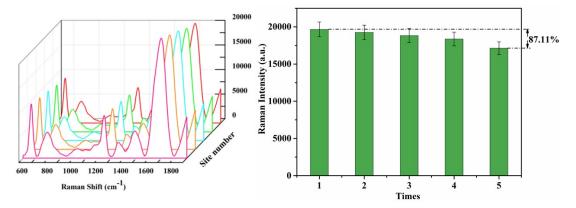


Figure S2. Raman intensity of 2,6-DCP at 1596 cm⁻¹ on the same substrate was repeatedly detected 5 times.