Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Design, Synthesis, Biological Evaluation, and SAR Studies of Novel Cyclopentaquinoline Derivatives as DNA Intercalators, Topoisomerase II Inhibitors, and Apoptotic Inducers

Mohamed M. Hammoud^{a,b,*}, Alaa S. Nageeb^b, M. A. Morsi^b, Esam A. Gomaa^b, Ayman Abo Elmaaty^c, and Ahmed A. Al-Karmalawy^{d,*}

^a Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.

^b Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.

^c Department of Medicinal Chemistry, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt.

^d Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt.

* Corresponding authors:

Ahmed A. Al-Karmalawy: Email: <u>akarmalawy@horus.edu.eg</u> ORCID: <u>0000-0002-8173-6073</u>

Mohamed M. Hammoud: Email: elmhammouda@mans.edu.eg

Figure SI 1. 2D overlay diagram showing the superimposition of the native co-crystallized EVP, and the redocked co-crystallized one at human topoisomerase II-DNA complex target protein with **PDB:** 3QX3 with RMSD value 1.42 Å after the re-docking process for MOE program validation.

	In vitro Cytotoxicity IC50 (µM)•					
Comp.						
	HePG-2	MCF-7	HCT-116	MDA-231	Caco-2	
5	10.45±0.8	36.33±2.3	22.49±1.8	17.09±1.4	57.39±3.2	
6a	64.28±2.8	56.48±3.1	49.12±2.7	62.27±3.2	74.28±3.8	
6b	28.43±1.9	23.87±1.8	30.04±2.2	34.62±2.4	45.49±2.9	
6c	19.57±1.4	15.92±1.2	13.55±1.1	26.86±2.0	31.02±2.5	
6d	7.06±0.4	11.61±0.8	6.28±0.3	8.32±0.6	18.76±1.4	
<u>6</u> e	46.60±2.3	41.52±2.5	37.25±2.4	50.39±2.9	67.01±3.5	
6f	2.31±0.1	6.83±0.4	3.67±0.2	4.78±0.3	9.83±0.7	
6g	72.14±3.2	82.36±3.9	68.43±3.1	75.41±3.5	92.53±4.2	
Doxorubicin	4.50±0.2	4.17±0.2	5.23±0.3	3.18±0.1	12.49±1.1	

 Table SI 1. Cytotoxic activity of some compounds against Liver, Breast, and Colon cancer cell

 lines.

Table SI 2. Binding scores, RMSD values, and amino acid/nucleotides interactions of the synthesized compounds (**6a-g**) into DNA–topo II complex along with doxorubicin and the co-crystallized ligand (EVP) as two reference standards.

Compound	Score ^a	RMSD_refine ^b	Interactions	Distance Å
6a	-6.22	0.65	DT9/H-donor	3.28
6b	-6.49	1.94	ASP479/H-donor	3.34
			DA12/H-acceptor	3.44
			DG13/pi-pi	3.54
			DG13/pi-pi	3.56
6c	-5.81	1.12	DG13/H-donor	3.20
			DG13/H-pi	3.94
6d	-5.75	0.73	ARG503/H-donor	3.17
			GLN778/H-acceptor	3.46
			DG13/H-pi	3.75
			DG13/pi-pi	3.87
6e	-6.99	1.75	DA12/H-pi	3.66
			DT9/H-pi	3.72
			DG13/pi-pi	3.68
6f	-6.62	0.93	ASP479/H-donor	3.02
			ARG503/H-acceptor	3.20
			ARG503/pi-H	4.10
			DG13/pi-pi	3.85
6g	-6.96	1.54	DT9/H-pi	4.05
			DT9/pi-H	3.69
			DG13/pi-pi	3.77
			DG/13/pi-pi	3.54
Doxorubicin	-8.92	1.35	ASP479/H-donor	2.83
			DG10/H-donor	3.20
			DA12/H-donor	3.08
			ASP479/H-acceptor	3.02
			SER480/H-acceptor	3.38
			DT9/pi-H	3.48
EVP	-10.52	1.41	ASP479/H-donor	2.70
			MET782/H-donor	3.73
			DG13/H-donor	3.37
			GLN778/H-acceptor	2.94
			DA12/H-pi	3.75

Table SI 3. 2D pictures, 3D interactions and 3D protein positioning pictures representing the binding interactions of the investigated compounds (**6a-6g**) into human topoisomerase II-DNA complex target protein with the redocked co-crystallized ligand EVP and doxorubicin as reference controls.

Compound	2D picture	3D interactions	3D protein position
6a	City Arg		
6b	DT B9 O C12) 3:44 O C12) 3:44 O C12) 3:44 O C12) 3:44 O C12) 3:44 O C12) 3:56 O C12) C	DA12 DG13 Asp479	

SI 1. Spectral data of compounds (6a-g), (IR, ¹HNMR, ¹³CNMR, DEPT, and Mass spectroscopy).

(Z)-9-(2-phenylhydrazono)-2,3,4,9-tetrahydro-1H-cyclopenta[b]quinoline (6a).

(Z)-N'-(1,2,3,4-tetrahydro-9H-cyclopenta[b]quinolin-9-ylidene)nicotinohydrazide (6b).

(Z)-2-(1,2,3,4-tetrahydro-9H-cyclopenta[b]quinolin-9-ylidene)hydrazine-1-carbothioamide (6c).

(Z)-2-(1,2,3,4-tetrahydro-9H-cyclopenta[b]quinolin-9-ylidene)hydrazine-1-carboxamide (6d).

(Z)-N'-(1,2,3,4-tetrahydro-9H-cyclopenta[b]quinolin-9 ylidene)benzenesulfonohydrazide (6e).

(E)-3-(((Z)-1,2,3,4-tetrahydro-9H-cyclopenta[b]quinolin-9-ylidene)hydrazono)indolin-2-one (6f).

(Z)-9-(2-(naphthalen-1-yl)hydrazono)-2,3,4,9-tetrahydro-1H-cyclopenta[b]quinoline (6g).

