Electronic Supplementary Material (ESI) for New Journal of Chemistry.

Supporting Information

Comparison of two 5-(thiophene-2-yl)oxazole derived "turn on" fluorescence chemosensors for detection of Ga³⁺ and practical applications

Yuanying Liu^a, Haitao Wang^{b,*}, Xiaochuan Guo^a, Yujing Xing^a, Kehui Wei^a, Mingyi Kang^a, Xiaofeng Yang^a, Meishan Pei^a and Guangyou Zhang^{a,*}

^a School of chemistry and chemical engineering, University of Jinan, Jinan 250022, China. E-mail address: chm_zhanggy@ujn.edu.cn.
^b Henan Sanmenxia Aoke Chemical Industry Co. Ltd., Sanmenxia 472000, China. E-mail address: wht0405@126.com.

*Corresponding author: Guangyou Zhang, E-mail address: chm_zhanggy@ujn.edu.cn. HaiTao Wang, E-mail address: wht0405@126.com.

Table of Contents

- **1.** Figure S1. ¹H NMR in DMSO- d_6 spectrum of L1.
- **2.** Figure S2. ¹³C NMR in DMSO- d_6 spectrum of L1.
- 3. Figure S3. The FTIR spectrum of L1.
- 4. Figure S4. ESI-MS spectrum of the L1.
- 5. Figure S5. ¹H NMR in DMSO- d_6 spectrum of L2.
- 6. Figure S6. ¹³C NMR in DMSO- d_6 spectrum of L2.
- 7. Figure S7. The FTIR spectrum of L2.
- 8. Figure S8. ESI-MS spectrum of the L2.
- Figure S9. Fluorescence emission intensity of L1 (a) and L2 (b) towards Ga³⁺ as a function of time.
- 10. Figure S10. UV-vis spectra of L1 (a) and L2 (b) in the presence of different metal ions in DMSO/H₂O buffer solution.
- Figure S11. Benesi-Hildebrand plot of L1 and L2, assuming 1:2 stoichiometry for association between sensors and Ga³⁺.
- 12. Figure S12. Absorbance titration spectra of complex L1 (a) and L2 (b) with addition of Ga^{3+} in DMSO/H₂O tris buffer solution.
- 13. Figure S13. Job's plot of the L1 (a) and L2 (b) in DMSO/H₂O buffer solution.
- 14. Figure S14. ESI-MS of L1 with addition of Ga³⁺.
- **15. Figure S15.** ESI-MS of L2 with addition of Ga³⁺.
- 16. Figure S16. The HOMO and LUMO orbital distributions and energy levels of L1,
 L1-Ga³⁺ and L2, L2-Ga³⁺.
- 17. Table S1. Determination of the Ga³⁺ concentration in tap water samples with L1.
- **18. Table S2.** Determination of the Ga^{3+} concentration in tap water samples with L2.

Calculation of quantum yield, detection limit, association constant

The quantum yield was calculated according to the following formula (1):

$$\Phi_u = \Phi_s \frac{F_u A_s n_u^2}{F_s A_u n_s^2}$$

 Φ , *F*, *A*, and *n* represent the quantum yield, the integrated area under the corrected emission spectra, the absorbance intensity at the excitation wavelength and the refractive index of solvent, respectively. In addition, *s* refers to rhodamine B as the standard, and *u* refers to the target. The quantum yield (Φ) of rhodamine B dissolved in anhydrous ethanol is 0.97.

The detection limit of L1 and L2 for Ga^{3+} were calculated by the following formula (2):

$$LOD = 3\sigma/s$$

where σ is the standard deviation of 10 times the intensity of free L1 and L2 (L1-Ga³⁺ and L2-Ga³⁺), and s is the slope of the emission intensity of L1 and L2 (L1-Ga³⁺ and L2-Ga³⁺) as a function of the Ga³⁺ concentration.

The association constant between L1 and L2 for Ga^{3+} were calculated by the following formula (3):

$$\frac{1}{\Delta F} = \frac{1}{\Delta F_{max}} + \frac{1}{K\Delta F_{max}} \cdot \frac{1}{[Ga^{3+}]^2}$$

where $\Delta F = F - F_0$ and $\Delta F_{max} = F_{max} - F_0$, with F_0 , F and F_{max} being the fluorescence intensities of the free sensor, at various concentration of Ga³⁺ and at the maximum concentration of Ga³⁺ respectively.

Fig. S1. ¹H NMR in DMSO- d_6 spectrum of L1.

Fig. S2. 13C-NMR in DMSO- d_6 spectrum of L1.

Figure S3. The FTIR spectrum of L1.

Figure S4. ESI-MS spectrum of L1.

Fig. S5. ¹H NMR in DMSO- d_6 spectrum of L2.

Fig. S6. ¹³C NMR in DMSO- d_6 spectrum of L2.

Figure S7. The FTIR spectrum of L2.

Fig. S8. ESI-MS spectrum of the probe L2.

Fig. S9. Fluorescence emission intensity of L1 (a) at 471 nm towards Ga^{3+} (5 equiv.) and L2 (b) at 511 nm towards Ga^{3+} (10 equiv.) as a function of time.

Fig. S10. UV-vis spectra of L1 (a) and L2 (b) in the presence of different metal ions $(Ga^{3+}, Al^{3+}, In^{3+}, Zn^{2+}, Cd^{2+}, Hg^{2+}, Cu^{2+}, Ag^+, Ni^{2+}, Co^{2+}, Fe^{3+}, Mn^{2+}, Cr^{3+}, Ca^{2+}, Ba^{2+}, Li^+, Na^+, and K^+.)$ (5 equiv. for L1 and 10 equiv. for L2) in DMSO/H₂O buffer solution (V/V = 9:1, Tris = 10 mM, pH = 7.4).

Fig. S11. Benesi-Hildebrand plot of **L1** (a) and **L2** (b), assuming 1:2 stoichiometry for association between sensors and Ga³⁺.

Fig. S12. Absorbance titration spectra of complex L1 (a) and L2 (b) with addition of Ga^{3+} (5 equiv. for L1 and 10 equiv. for L2) in DMSO/H₂O tris buffer solution (V/V = 9:1, Tris = 10 mM, pH = 7.4)

Fig. S13. Job's plot of the L1 (a) and L2 (b) in DMSO/H₂O buffer solution (V/V = 9:1, Tris = 10 mM, pH = 7.4).

Figure S14. ESI-MS of L1 with addition of Ga³⁺.

Figure S15. ESI-MS of L2 with addition of Ga³⁺.

Fig. S16. The HOMO and LUMO orbital distributions and energy levels of L1, L1-

Ga³⁺ and L2, L2-Ga³⁺.

|--|

Sample	Ga ³⁺ added	Ga ³⁺ recovered	Recovery	RSD	
	$(mol \cdot L^{-1})$	$(mol \cdot L^{-1})$	(%)	(%)	
1	1.00×10^{-5}	0.93×10^{-5}	93.37	0.21	
2	3.00×10^{-5}	2.97×10^{-5}	98.99	0.24	
3	5.00×10^{-5}	4.88×10^{-5}	97.51	0.35	
Table S2 Determination of the Ga^3 concentration in tap water samples with L2					
Sample	Ga ³⁺ added	Ga ³⁺ recovered	Recovery	RSD	
	$(mol \cdot L^{-1})$	$(mol \cdot L^{-1})$	(%)	(%)	
1	4.00×10^{-5}	4.09×10^{-5}	102.20	0.34	
2	6.00×10^{-5}	5.85×10^{-5}	97.43	0.16	
3	7.00×10^{-5}	6.82×10^{-5}	97.48	0.14	

R.S.D = SD/X. Where SD is the standard deviation of 3 recovered measurements, and X is the arithmetic average value of 3 recovered measurements.