Electronic Supplementary Information for

Turn-on silicon-based fluorescent probe for visualizing endogenous CO during hypoxia

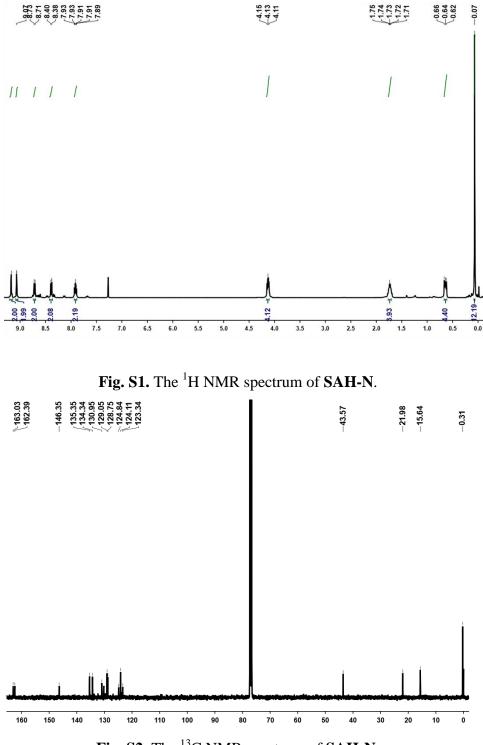
Fengqing Gai^a, Xuewen Guo^b, Guowei Ding^a, Kun Zhang^a, Yafang Zhang^a, and Yujing Zuo^{a,*}

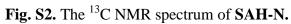
^aSchool of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, P.R. China.

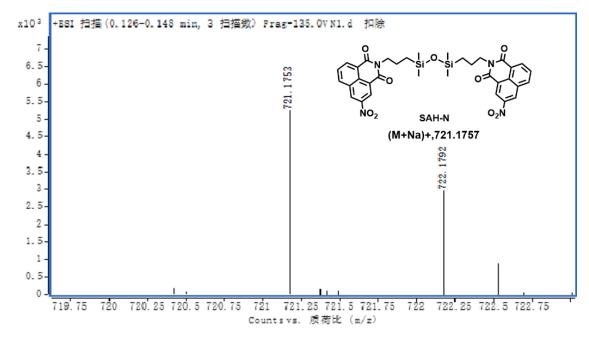
^bLeibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, D-18059 Rostock, Germany

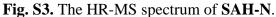
Table of Contents

Cytotoxicity Assays S3 Fig. S1 S4 Fig. S2 S4 Fig. S3 S5 Fig. S4 S5 Fig. S5 S6 Fig. S7 S7 Table S1 S7	Materials and instruments	S3
Fig. S2 S4 Fig. S3 S5 Fig. S4 S5 Fig. S5 S6 Fig. S6 S6 Fig. S7 S7	Cytotoxicity Assays	S3
Fig. S3 S5 Fig. S4 S5 Fig. S5 S6 Fig. S6 S6 Fig. S7 S7	Fig. S1	S4
Fig. S4 S5 Fig. S5 S6 Fig. S6 S6 Fig. S7 S7	Fig. S2	S4
Fig. S5	Fig. S3	S5
Fig. S6	Fig. S4	S5
Fig. S7	Fig. S5	S6
	Fig. S6	S6
Table S1S7	Fig. S7	S7
	Table S1	S7


Materials and instruments


All chemicals and solvents used in the experiment were of analytical grade and were used without further purification. 3, 3'-(1, 1, 3, 3-tetramethyldisiloxane-1, 3-diyl) bis (Propan-1-amine) purchased from Hangzhou Da di Chemical. 3-Nitro-1, 8-naphthalic anhydride was purchased from Shanghai Aladdia Biochemical Technology Co., Ltd. HepG2 cells lines were purchased from Procell Life Science&Technology Co., Ltd. The other reagents used in this work were purchased from the supplier, and the water used in the experiment was ultrapure water.


The ¹H NMR and ¹³C NMR spectra were measured on an AVANCE III 400 MHz Digital NMR Spectrometer. Fluorescence spectra were recorded with a HITACHI F4600 fluorescence spectrophotometer with a 1 cm standard quartz cell. Absorption spectra were obtained on a Shimadzu UV-2700 Power spectrometer. MTT was obtained from Sigma-Aldrich. Fluorescence imaging of HepG2 cells was performed with Nikon A1MP confocal microscopy. The pH measurements were carried out on a Mettler-Toledo Delta 320 pH meter.


Cytotoxicity Assays

The cytotoxicity of **SAH-N** was performed via the standard MTT assays. HepG2 cells cells were first inoculated in culture plate until they adhered to the walls. Subsequently, the culture media with different concentrations of **SAH-N** were added to the 96-well plate and cultured in an incubator (5% CO₂ and 95% air, 37 °C) for 24 h. MTT (10 μ L) was added and the cells were continue cultured for 4 h. Finally, the plate was shaken for about 10 min, and each well was analyzed by the microplate reader and detected at the absorbance of 570 nm.

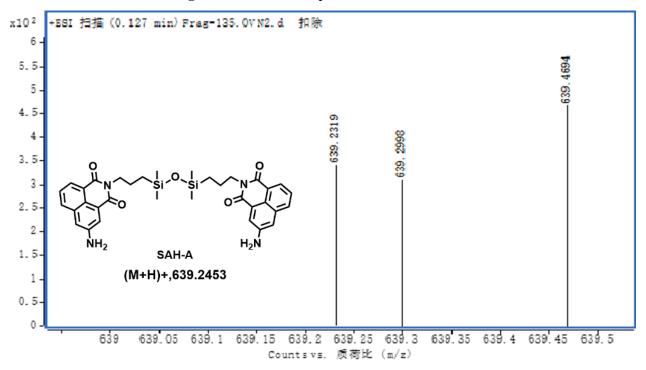


Fig. S4. The HR-MS spectrum of SAH-N reacted with CORM-2.

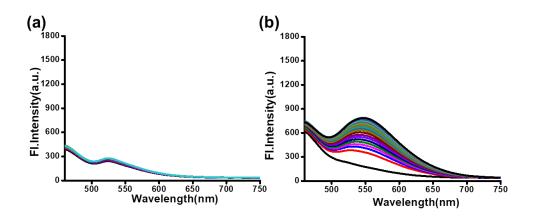



Fig. S5. (a) Fluorescence spectra of SAH-N (10 μ M) for 60 min. (b) Fluorescence spectra of SAH-N (10 μ M) treated with 30 μ M CORM-2 for 60 min. $\lambda_{ex} = 440$ nm.

Fig. S6. HepG2 cells in the presence of **SAH-N** at various concentrations measured using MTT assay.

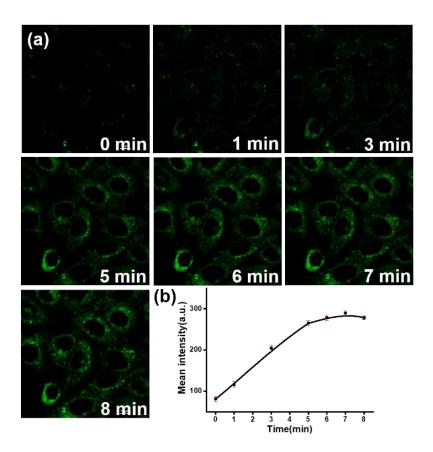


Fig. S7. (a) Fluorescent images of of HepG2 cells stained with 10 μ M SAH-N with increasing incubation times. (b) Fluorescence intensity changes of the photos of cells in green channel. CORM-2 concentration: 30 μ M; λ_{ex} : 488 nm; λ_{em} : 500 nm – 550 nm; scale bar: 10 μ M.

Table S1. Additional table	of comparison betwee	n reported CO	probes and probe SAH-N .

Probe	$\begin{pmatrix} \lambda_{em} \\ (nm) \end{pmatrix} \lambda_{ex} (nm)$	Pd ²⁺ I free	Reaction site	Endogenous experiment	Ref.	
-------	--	----------------------------	---------------	--------------------------	------	--

	580	770	No	Ester bond	Heme	36
$ \begin{array}{c c} Ph & O \\ Ph & N \\ Ph & H \\ Ph & H \\ Ph & O \\ Ph & O \\ \end{array} $	430	549/451	No	Ether bond	LPS	37
$CI \xrightarrow{O} \xrightarrow{N+} I$	520	605	No	Ester bond	Heme	38
	330	552/440	No	Ester bond	Hypoxia	39
	471	608	No	Ester bond		40

F ₃ C N H O	360	520/425	No	Urethane bond	Heme/LPS	41
$H_{2}N$ $(Si - O)Si - O)Si - O$ m a O N O	425	559/450	No	Ether bond		Anal. Chem. 2021, 93, 38, 12899– 12905
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	440	537	Yes	Nitro	Mainly hypoxia	This work