Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Novel Fe_{2.55}Sb₂ Alloy Nanoparticles incorporated in N-doped Carbon as

Bifunctional Oxygen Electrocatalyst for Rechargeable Zn-Air Battery

Xing Xie^a, Panpan Sun^{a,c*}, Weitao Liu^a, Tao Gong^a, Xiaowei Lv^{a,c}, Liang Fang^b, Yongan Wei^{a*}, Xiaohua Sun^{a,c*}

a College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China.

b Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China.

c Hubei Three Gorges Laboratory, Yichang, Hubei 443007.

*Corresponding author. E-mail:

sunpp705@nenu.edu.cn. weiya605@nenu.edu.cn. mksxh@163.com.

To be published in New Journal of Chemistry

Fig. S1. Calibration of Hg/HgO reference electrode with respect to reversible hydrogen electrode (RHE).

Fig. S2. XRD pattern of FeSb/NC-N catalyst.

Fig. S3. a) XRD patterns and b) Raman spectra of FeSb/NC with different feeding amount of SbCl₃.

Fig. S4. a) N_2 adsorption-desorption isotherms and b) the corresponding pore size distribution curves of FeSb/NC and FeSb/NC-N catalysts.

Fig. S5. The XPS survey spectra and the corresponding elemental contents of Fe/NC, FeSb/NC-0.4g and FeSb/NC-0.6g.

Fig. S6. High-resolution N 1s, Fe 2p and Sb 3d spectra of FeSb/NC-0.4g and FeSb/NC-0.6g.

Fig. S7. LSV curves for ORR of FeSb/NC and FeSb/NC-N catalysts.

Fig. S8. LSV curves of Fe/NC, Sb/NC, FeSb/NC-0.4g and FeSb/NC-0.6g catalysts measured at different rotation rates and the corresponding K-L plots.

Fig. S9. ORR durability test of FeSb/NC performed on carbon paper.

Fig. S10. ORR performance of FeSb/NC with different feeding amount of SbCl₃.

Fig. S11. OER LSV curves of FeSb/NC before and after acid leaching.

Fig. S12. Chronopotentiometric curve at a constant current density of 10 mA cm⁻² for on FeSb/NC.

Fig. S13. High-resolution Fe $2p_{3/2}$ and Sb $3d_{5/2}$ spectra of FeSb/NC after 120 h of charge-discharge cycling test at 5mA cm⁻² for 120 h.

Table S1 ORR parameters for for FeSb/NC-0.1g, FeSb/NC-0.4g, FeSb/NC-0.6g.						
Samples	Peak potential (V vs. RHE)	E _{onset} (V vs. RHE)	E 1/2 (V vs. RHE)	J _L (mA cm ⁻²)	Tafel slope (mV dec ⁻¹)	
FeSb/NC-0.1g	0.82	0.89	0.81	5.00	62.9	
FeSb/NC-0.4g	0.84	0.90	0.82	5.24	61.0	
FeSb/NC-0.6g	0.83	0.90	0.82	5.07	61.1	

Table S2 Comparison of Zn-air battery performance of the FeSb/NC catalyst with recently reported electrocatalysts.

Catalysts	OCV (V)	Peak power density (mW cm ⁻²)	Specific capacity (mA h g-1 Zn)	Cycling durability @J(mA cm ⁻²)	Ref.
FeSb/NC	1.46	175	751	887 h @5 616 h @10	This work
N-CoS ₂ YSSs	1.41	81	744	165 h @10	[1]
FeNi ₃ @NC	1.39	139	756	30 h @5	[2]
Co@hNCTs- 800	1.45	149	746	500 h @5	[3]
Zn-Ni ₃ FeN/NG	1.60	158	650	180 h @10	[4]
Fe-enriched- FeNi ₃ /NC	1.43	89	734	14 h @10	[5]
CoSe2@NC	1.48	137	751	83 h @10	[6]
CoFe@NC/NC HNSs-700	1.49	184	774	50 h @5	[7]
Mn-RuO ₂	1.55	181	812	2500 h @10	[8]
C06M06C2- C0@NC	1.38	45	760	300 h @10	[9]
CoFe/S-N-C	1.48	130	814	100 h @10	[10]
NiCo/NHCS- TUC-3	1.59	256	757	70 h @5	[11]
CS350-10Ar	1.36	135		120 h @5	[12]
Co/NGC-3		134	716	120 h @5	[13]
FeCo/Co ₂ P@ NPCF	1.44	154		107 h @10	[14]
MnSAC		258	675	100 h @5	[15]
C09S8@C0/Mn- S,N-PC	1.49	80		210 h @10	[16]
CoFe-NCNFs	1.52	116		110 h @5	[17]
Fe-NC SAC		180	786	160 cycles @20	[18]
FeCo/Se-CNT	1.54	173		70 h @5	[19]
FeCu _{0.3} -N/C	1.50	111	682	75 h @5	[20]
NiFe ₃ @NGHS- NCNT _S	1.51	127		166 h @10	[21]
f-FeCo-CNT	1.48	196	754	180 h @20	[22]
Catalysts	OCV (V)	Peak power density (mW cm ⁻²)	Specific capacity (mA h g-1 Zn)	Cycling durability @J(mA cm ⁻²)	Ref.

CoSb/NC-0.8	1.42	180		160 h @10	[23]
CoSb ₃ /NCL-30		211		60 h @10	[24]
S-LaCoO ₃	1.47	92	747	100 h @2	[32]
LSCP-3	1.50	52	740	60 h @10	[33]
Pb ₂ Ru ₂ O _{6.5}		195		33 h @10	[34]
YRO	1.17	145		34 h @10	[35]

Table S3 Comparison of BI and SBI values of FeSb/NC catalyst with recently reported electrocatalysts.

Catalysts	ORR (V) @-3 mA/cm ² geo	OER (V) @10 mA/cm ² geo	BI (V)	SBI (uA/cm² _{BET})	Ref.
FeSb/NC	0.82	1.72	0.90	4.9	This work
Co ₉ S ₈ /(N,S- doped carbon)	0.84	1.64	0.80	1.3	[25]
N-doped CNT framework	0.83	1.60	0.77	6.8	[26]
N,P-doped C foam	0.80	1.90	1.10	0.8	[27]
$\frac{Ba_{0.5}Sr_{0.5}Co_{0.8}F}{e_{0.2}O_{3-\delta}}$	0.74	1.58	0.84	2.7	[28]
a-MnO ₂	0.76	1.72	0.96	14.7	[29]
Co _x Mn _{3-x} O ₄ /C	0.82	1.80	0.98	92.6	[30]
Pb ₂ Ru ₂ O _{7-x}	0.74	1.43	0.69	274.0	[31]

References

[1] X. F. Lu, S. L. Zhang, E. B. Shangguan, P. Zhang, S. Y. Gao, X. W. Lou, Adv. Sci. 7 (2020) 2001178.

[2] D. Chen, J. W. Zhu, X. Q. Mu, R. L. Cheng, W. Q. Li, S. L. Liu, Z. H. Pu, C. Lin, S. C. Mu, Appl. Catal. B Environ. 268 (2020), 118729.

[3] Q. Y. Zhou, Z. Zhang, J. J. Cai, B. Liu, Y. L. Zhang, X. F. Gong, X. L. Sui, A. P. Yu, L. Zhao, Z.
B. Wang, Z. W. Chen, Nano Energy 71 (2020), 104592.

[4] X. Y. He, Y. H. Tian, Z. L. Huang, L. Xu, J. C. Wu, J. C. Qian, J. M. Zhang, H. N. Li, J. Mater. Chem. A 9 (2021) 2301.

[5] K. Chen, S. Kim, R. Rajendiran, K. Prabakar, G. Z. Li, Z. C. Shi, C. Jeong, J. Kang, O. L. Li, J. Colloid Interface Sci. 582 (2021) 977-990.

[6] K. X. Ding, J. G. Hu, J. Luo, W. Jin, L. M. Zhao, L. R. Zheng, W. S. Yan, B. C. Weng, H. S. Hou, X. B. Ji, Nano Energy 91 (2022), 106675.

[7] S. J. Wang, H. Y. Wang, C. Q. Huang, P. C. Ye, X. T. Luo, J. Q. Ning, Y. J. Zhong, Y. Hu, Appl. Catal. B Environ. 298 (2021), 120512.

[8] C. H. Zhou, X. Chen, S. Liu, Y. Han, H. B. Meng, Q. Y. Jiang, S. M. Zhao, F. Wei, J. Sun, T. Tan,
 R. F. Zhang, J. Am. Chem. Soc. 144 (2022) 2694-2704.

- [9] Y. Q. Li, Z. H. Yin, M. Cui, S. R. Chen, T. L. Ma, Mater. Toady Energy 18 (2020), 100565.
- [10] G. J. Li, Y. B. Tang, T. T. Fu, Y. Xiang, Z. P. Xiong, Y. J. Si, C. Z. Guo, Z. Q. Jiang, Chem. Eng. J. 429 (2022), 132174.

[11] K. Sheng, Q. F. Yi, A-L. Chen, Y. B. Wang, Y. H. Yan, H. D. Nie, X. L. Zhou, ACS Appl. Mater. Interfaces 13 (2021) 45394-45405.

[12] B. Li, H. G. Xue, H. Pang, Q. Xu, Sci. China Chem. 63 (2020) 475-482.

[13] J. M. Li, Y. M. Kang, D. Liu, Z. Q. Lei, P. Liu, ACS Appl. Mater. Interfaces 12 (2020) 5717-5729.

[14] Q. Shi, Q. Liu, Y. Ma, Z. Fang, Z. Liang, G. Shao, B. Tang, W. Y. Yang, L. Qin, X. S. Fang, Adv. Energy Mater. 10 (2020) 1903854.

[15] H. S. Shang, W. M. Sun, R. Sui, J. J. Pei, L. R. Zheng, J. C. Dong, Z. L. Jiang, D. N. Zhou, Z. B. Zhuang, W. X. Chen, J. T. Zhang, D. S. Wang, Y. D. Li, Nano Lett. 20 (2020) 5443-5450.

[16] R.-M. Sun, L. Zhang, J.-J. Feng, K.-M. Fang, A.-J. Wang, J. Colloid Interface Sci. 608 (2022) 2100-2110.

[17] S.-Y. Lin, Y.-P. Chen, Y. Cao, L. Zhang, J.-J. Feng, A.-J. Wang, J. Power Sources 521 (2022), 230926.

[18] C. Du, Y. J. Gao, J. G. Wang, W. Chen, J. Mater. Chem. A 8 (2020) 9981.

[19] H. W. Zhang, M. Q. Zhao, H. R. Liu, S. R. Shi, Z. H. Wang, B. Zhang, L. Song, J. Z. Shang, Y.

Yang, C. Ma, L. R. Zheng, Y. H. Han, W. Huang, Nano Lett. 21 (2021) 2255-2264.

[20] B. Wang, L. Xu, G. P. Liu, Y. Z. Ye, Y. Quan, C. T. Wang, W. X. Wei, W. S. Zhu, C. X. Xu, H.M. Li, J. X. Xia, J. Alloys Compd. 826 (2020), 154152.

[21] Y. F. Ma, W. H. Chen, Z. Q. Jiang, X. N. Tian, X. Y. WangGuo, G. L. Chen, Z.-J. Jiang, J. Mater. Chem. A (2022), Accepted Manuscript.

[22] Y. Y. Wang, A. Kumar, M. Ma, Y. Jia, Y. Wang, Y. Zhang, G. X. Zhang, X. M. Sun, Z. F. Yan, Nano Res. 13 (2020) 1090-1099.

[23] T. Gong, P. P. Sun, X. Xie, D. Zhang, Y. A. Wei, B. Li, N. Huang, L. Fang, X. W. Lv, X. H. Sun, Appl. Surf. Sci. 562 (2021), 150112.

[24] T.-B. Yang, K.-Y. Zhou, G.-Y. Chen, W.-X. Zhang, J.-C. Liang, RSC Adv. 7 (2017), 33012.

[25] Z.-Q. Cao, M.-Z. Wu, H.-B. Hu, G.-J. Liang, C.-Y. Zhi, NPG Asia Mater. 10 (2018) 670-684.

[26] B. Y. Xia, Y. Yan, N. Li, H. B. Wu, X. W. Lou, X. Wang, Nat. Energy 1 (2016), 15006.

[27] J. T. Zhang, Z. H. Zhao, Z. H. Xia, L. M. Dai, Nat. Nanotechnol. 10 (2015), 444.

[28] J. Wang, H. Zhao, Y. Gao, D. J. Chen, C. Chen, M. Saccoccio, F. Ciucci, Int. J. Hydrogen Energy 41 (2016) 10744-10754.

[29] Y. T. Meng, W. Q. Song, H. Huang, Z. Ren, S.-Y. Chen, S. L. Suib, J. Am. Chem. Soc. 136 (2014) 11452-11464.

- [30] C. Li, X. P. Han, F. Y. Cheng, Y. X. Hu, C. C. Chen, J. Chen, Nat. Commun. 6 (2015), 7345.
- [31] P. Gayen, S. Saha, K. Bhattacharyya, V. K. Ramani, ACS Catal. 10 (2020) 7734-7746.
- [32] J. Q. Ran, T. T. Wang, J. Y. Zhang, C. L. Xu, Y. G. Liu, S. B. Xi, D. Q. Gao, Chem. Mater. 32 (2020) 3439-3446.
- [33] R. Majee, T. Das, S. Chakraborty, S. Bhattacharyya, ACS Appl. Mater. Interfaces 12 (2020) 40355-40363.
- [34] J. Park, M. Risch, G. Nam, M. Park, T. J. Shin, S. Park, M. G. Kim, Y. Shao-Horn, J. Cho, Energy Environ. Sci. 10 (2017) 129-136.
- [35] J. Park, M. Park, G. Nam, M.-G. Kim, J. Cho, Nano Lett. 17 (2017) 3974-3981.