## Supporting Information to the New Journal of Chemistry

# Design, synthesis and antifungal mechanism of novel acetophenone derivatives containing 1, 3, 4-thiadiazole-2-thioethers 

Li Dou, ${ }^{a}$ Huabin Shi, ${ }^{a}$ Xue Niu, ${ }^{\text {a, b }}$ Hong Zhang, ${ }^{a}$ Kankan Zhang, ${ }^{\text {a }}$ and Zhibing Wu*a

${ }^{a}$ State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for $R \& D$ of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
${ }^{b}$ School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China.
*Corresponding author

E-mail address: zbwu@gzu.edu.cn (Z.B. Wu)

## Contents

1. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR and HRMS data of the title compounds. ..... 2-13
2. Copies of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR and HRMS of the title compounds ..... 13-62
3. Crystallographic data of compound E27 ..... 63-64
4. The regression equation of the title compounds with $\mathrm{EC}_{50}$ values ..... 64-66

## 1. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19}$ F NMR and HRMS data of the title compounds



Date for $\mathbf{E 1}$. A yellow solid, yield $95 \%$, m.p. $59-60^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8: 8.52-8.49 $\left(\mathrm{m}, 2 \mathrm{H}\right.$, phenyl H), 7.69-7.64 (m, 1H, phenyl H), 7.55-7.51 (m, 2H, phenyl H), $2.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta: 182.97,173.53,169.13,134.53,134.51,131.28,128.74,16.63 ;$ HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]^{+} 237.01508$, found 237.01466.


Date for E2. A yellow solid, yield $89 \%$, m.p. $32-33{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 8: 8.52-8.49 (m, 2H, phenyl H), 7.68-7.63 (m, 1H, phenyl H), 7.54-7.50 (m, 2H, phenyl H), 3.43 (q, $J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$ ), $1.53\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta: 182.94,172.74$, 169.02, 134.57, 134.45, 131.25, 128.71, 28.71, 14.57; HRMS (ESI): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OS}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 251.03073$, found 251.03006 .


Date for E3. A yellow liquid, yield $90 \%{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta: 8.52-8.49(\mathrm{~m}, 2 \mathrm{H}$, phenyl H), $7.68-7.64$ (m, 1H, phenyl H), $7.55-7.51$ (m, phenyl H), $3.40(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\underline{\mathrm{CH}}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.95-1.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.09\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta: 182.97,173.07,168.96,134.59,134.46,131.27,128.72,36.18,22.64,13.46$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]^{+} 265.04638$, found 265.04578 .


Date for E4. A orange-red solid, yield $88 \%$, m.p. $32-33{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta: 8.52-$ $8.49(\mathrm{~m}, 2 \mathrm{H}$, phenyl H), 7.68-7.64 (m, 1H, phenyl H), 7.55-7.51 (m, 2H, phenyl H), $3.42(\mathrm{t}, J=$ $\left.8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.88-1.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.56-1.46(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ ), $0.97\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ : 182.97, 173.11, 168.96, 134.59, 134.45, 131.27, 128.72, 34.05, 31.13, 22.06, 13.68; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]^{+}$279.06203, found 279.06174 .


Date for E5. A orange-red liquid, yield $91 \%{ }^{1}{ }^{1} \mathrm{H}$ NR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta: 8.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2H, phenyl H), 7.69-7.64 (m, 1H, phenyl H), 7.55-7.51 (m, 2H, phenyl H), $3.42(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), \quad 1.90-1.83 \quad\left(\mathrm{~m}, \quad 2 \mathrm{H}, \quad \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), \quad 1.50-1.42 \quad(\mathrm{~m}, \quad 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.41-1.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.92(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta: 183.01,173.15,168.96,134.61,134.47$, $131.28,128.74,34.34,31.02,28.84,22.31,14.07$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$293.07768, found 293.07712.


Date for E6. A yellow solid, yield $76 \%$, m.p. $37-39{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta: 8.52-8.49$ $(\mathrm{m}, 2 \mathrm{H}$, phenyl H), 7.69-7.64 $(\mathrm{m}, 1 \mathrm{H}$, phenyl H), $7.55-7.51(\mathrm{~m}, 2 \mathrm{H}$, phenyl H$), 3.41(\mathrm{t}, J=8.0 \mathrm{~Hz}$, 2H, $\mathrm{SCH}_{2}$ ), 3.28-3.25 (m, 2H, CH $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{3}\right), 1.89-1.82\left(\mathrm{~m}, 2 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{3}\right)$,
1.81-1.74 (m, 2H, $\left.\left(\mathrm{CH}_{2}\right)_{3} \underline{\mathrm{CH}}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}\right), 1.51-1.33\left(\mathrm{~m}, 8 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 0.89-0.86 (m, 7H, $\left.\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 182.99,173.17,168.94$, $165.38,134.59,134.46,131.28,128.73,34.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 32.03,29.84,29.71(\mathrm{~d}, J=3.0 \mathrm{~Hz})$, $29.60(\mathrm{~d}, J=1.0 \mathrm{~Hz}), 29.39(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 29.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 28.88(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 22.83$, 14.27; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]^{+} 377.17158$, found 377.17194 .


Date for E7. A yellow liquid, yield $93 \% .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta: 8.52-8.49(\mathrm{~m}, 2 \mathrm{H}$, phenyl H), 7.68-7.63 (m, 1H, phenyl H), 7.54-7.50 (m, 2H, phenyl H), $3.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.09\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 182.95$, 173.32, 168.91, 134.60, 134.43, 131.25, 128.70, 42.69, 28.55, 21.95; HRMS (ESI): m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]^{+}$279.06203, found 279.06140.


Date for E8. A yellow liquid, yield $90 \%$. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta: 8.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl H), 7.69-7.64 (m, 1H, phenyl H), 7.56-7.51 (m, 2H, phenyl H), $3.43(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{SCH}_{2}\right), 1.82-1.70\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.98\left(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta: 183.01,173.10,168.97,134.61,134.47,131.28,128.74,37.80,32.52$, 27.71, 22.31; HRMS (ESI): m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]^{+}$293.07768, found 293.07727.


Date for E9. A yellowish orange solid, yield $88 \%$, m.p. $56-58{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ )
$\delta: 8.34-8.31(\mathrm{~m}, 2 \mathrm{H}$, phenyl H), 7.79-7.75 (m, 1H, phenyl H), 7.65-7.61 (m, 2H, phenyl H), $7.55-7.53(\mathrm{~m}, 2 \mathrm{H}$, phenyl H$), 7.40-7.36(\mathrm{~m}, 2 \mathrm{H}$, phenyl H$), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}$, phenyl H$), 4.71(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CH}_{2}$ ); ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $d_{6}$ ) $\delta: 182.71,171.95,168.74,135.84,134.45,134.26$, 130.66, 129.22, 128.73, 128.69, 127.89, 37.52; HRMS (ESI): m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 313.04638 , found 313.04599 .


Date for E10. A yellowish orange solid, yield $90 \%$, m.p. $45-47{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) $\delta: 8.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl H$), 7.80-7.76(\mathrm{~m}, 1 \mathrm{H}$, phenyl H), $7.65-7.62(\mathrm{~m}, 2 \mathrm{H}, \mathrm{phenyl} \mathrm{H})$, $7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, phenyl H$), 7.26-7.24(\mathrm{~m}, 2 \mathrm{H}$, phenyl H$), 7.23-7.18(\mathrm{~m}, 1 \mathrm{H}$, phenyl H), $4.73\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}\right) \delta: 182.75,171.74,168.81$, $137.06,134.50,134.28,133.18,130.69,130.59,130.20,128.77,128.35,126.26,36.13,18.86$; HRMS (ESI): m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]^{+}$327.06203, found 327.06158 .


Date for E11. A greenish-yellow solid, yield $89 \%$, m.p. $58-59^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ : 8.52-8.49 (m, 2H, phenyl H), 7.70-7.65 (m, 1H, phenyl H), 7.56-7.52 (m, 2H, phenyl H), 7.27$7.22\left(\mathrm{~m}, 3 \mathrm{H}\right.$, phenyl H), $7.13\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, phenyl H), $4.63\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 183.03,172.14,169.26,138.82,135.12,134.59,134.52,131.28$, $130.03,129.12,128.91,128.77,126.43,38.28,21.51$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 327.06203$, found 327.06155 .


Date for E12. A yellow solid, yield $86 \%$, m.p. $71-72{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) $\delta: 8.34-$ $8.31(\mathrm{~m}, 2 \mathrm{H}$, phenyl H), 7.79-7.75 (m, 1H, phenyl H), 7.64-7.61 (m, 2H, phenyl H), $7.41(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl H), $7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl H$), 4.66\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $d_{6}$ ) $\delta: 182.70,172.08,168.67,137.23,134.46,134.27,132.64$, 130.67, 129.25, 129.16, 128.74, 37.40, 20.74; HRMS (ESI): m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 327.06203, found 327.06161.


Date for E13. A white solid, yield $87 \%$, m.p. $85-86^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.50(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl H), 7.68-7.64 (m, 1H, phenyl H), 7.55-7.47 (m, 3H, phenyl H), 7.32-7.24 (m, 1H, phenyl H), 6.94-6.90 (m, 2H, phenyl H), $4.69\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 183.07,173.10,169.05,157.71,134.64,134.44,131.25,131.05,129.83$, 128.73, 123.79, 120.71, 110.75, 55.66, 33.36; HRMS (ESI): m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 343.05695 , found 343.05679 .


Date for E14. A white solid, yield $90 \%$, m.p. $71-72{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta: 8.51-8.48$ (m, 2H, phenyl H), 7.69-7.65 (m, 1H, phenyl H), 7.56-7.52 (m, 2H, phenyl H), $7.27(\mathrm{t}, J=8.0 \mathrm{~Hz}$, 1 H , phenyl H), $7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, phenyl H$), 7.00(\mathrm{~s}, 1 \mathrm{H}$, phenyl H$), 6.87-6.84(\mathrm{~m}, 1 \mathrm{H}$, phenyl H), $4.63\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 182.99,171.96$,
$169.30,159.99,136.72,134.54,134.52,131.26,130.04,128.76,121.65,114.83,113.83,55.42$, 38.22; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 343.05695$, found 343.05612 .


Date for E15. A white solid, yield $91 \%$, m.p. $89-90^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta: 8.51-8.48$ $(\mathrm{m}, 2 \mathrm{H}$, phenyl H), 7.69-7.65 (m, 1H, phenyl H), 7.56-7.52 (m, 2H, phenyl H), 7.41-7.37 (m, 2H, phenyl H), 6.89-6.86 (m, 2H, phenyl H), $4.61\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 183.01,172.15,169.19,159.56,134.57,134.50,131.26,130.65,128.75,127.12$, 114.35, 55.43, 37.91; HRMS (ESI): m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 343.05695$, found 343.05606 .


Date for E16. A yellow solid, yield $90 \%$, m.p. $64-66^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) $\delta: 8.36-$ $8.33(\mathrm{~m}, 2 \mathrm{H}$, phenyl H$), 7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, phenyl H$), 7.82-7.76(\mathrm{~m}, 2 \mathrm{H}$, phenyl H$), 7.72(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, phenyl H), $7.65-7.61(\mathrm{~m}, 2 \mathrm{H}$, phenyl H), $7.58(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, phenyl H), 4.90 (s, 2H, CH $)_{2}$ ) ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $d_{6}$ ) $\delta: 182.76,170.74,169.24,134.53,134.23,133.76$ $(\mathrm{d}, J=1.0 \mathrm{~Hz}), 133.18,132.05,130.70,128.83,128.76,127.38(\mathrm{q}, J=30.3 \mathrm{~Hz}), 126.48(\mathrm{q}, J=5.1$ $\mathrm{Hz}), 124.28(\mathrm{q}, \mathrm{J}=275.7 \mathrm{~Hz}), 34.20(\mathrm{~d}, J=2.0 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ( $\left.376 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta:-58.09$; HRMS (ESI): m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]^{+} 381.03377$, found 381.03305 .


Date for E17. A yellow solid, yield $90 \%$, m.p. $74-76{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta: 8.51-$
$8.48(\mathrm{~m}, 2 \mathrm{H}$, phenyl H), $7.73(\mathrm{~s}, 1 \mathrm{H}$, phenyl H), $7.71-7.65(\mathrm{~m}, 2 \mathrm{H}$, phenyl H$), 7.58-7.52(\mathrm{~m}, 3 \mathrm{H}$, phenyl H), $7.48\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, phenyl H), $4.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ : $182.95,170.92,169.69,136.79,134.61,134.49,132.81(\mathrm{~d}, J=1.0 \mathrm{~Hz}), 131.53,131.26,129.47$, 128.81, $126.08(\mathrm{q}, J=4.0 \mathrm{~Hz}), 125.10(\mathrm{q}, J=4.0 \mathrm{~Hz}), 123.96(\mathrm{q}, J=269.7 \mathrm{~Hz}), 37.25 ;{ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-62.65$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]^{+}$381.03377, found 381.03302 .


Date for E18. A yellowish orange solid, yield $89 \%$, m.p. $117-118{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $\left.d_{6}\right) \delta: 8.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl H), 7.79-7.73(m, 5 H , phenyl H), 7.64-7.60 (m, 2H, phenyl H), $4.81\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $d_{6}$ ) $\delta: 182.68,171.35,169.03,141.29$ $(\mathrm{d}, J=1.0 \mathrm{~Hz}), 134.46,134.22,130.65,130.00,128.72,128.25(\mathrm{q}, J=31.9 \mathrm{~Hz}), 125.49(\mathrm{q}, J=4.0$ $\mathrm{Hz}), 124.16(\mathrm{q}, J=272.7 \mathrm{~Hz}), 36.57 ;{ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta:-62.50 ;$ HRMS (ESI): m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]^{+} 381.03377$, found 381.03311.


Date for E19. A yellow solid, yield $92 \%$, m.p. $66-67^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta: 8.50(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl H), 7.70-7.65 (m, 2H, phenyl H), 7.57-7.53 (m, 2H, phenyl H), 7.38-7.34 (m, 1H, phenyl H), 7.31-7.24 (m, 2H, phenyl H), $4.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta: 182.99,171.49,169.59,147.86(\mathrm{q}, J=1.4 \mathrm{~Hz}), 134.57,134.55,131.86,131.26,129.91,128.79$, $128.22,127.06,120.67(\mathrm{q}, J=259.6 \mathrm{~Hz}), 120.39(\mathrm{q}, J=1.6 \mathrm{~Hz}), 32.08 ;{ }^{19} \mathrm{~F}$ NMR $(376 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) $\delta:-56.88$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$397.02868, found
397.02795.


Date for E20. A yellow solid, yield $93 \%$, m.p. $64-66^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta: 8.51-$ $8.48(\mathrm{~m}, 2 \mathrm{H}$, phenyl H$), 7.70-7.66(\mathrm{~m}, 1 \mathrm{H}$, phenyl H$), 7.57-7.52(\mathrm{~m}, 2 \mathrm{H}$, phenyl H$), 7.44-7.41(\mathrm{~m}$, 1 H , phenyl H), $7.38(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, phenyl H$), 7.34(\mathrm{~s}, 1 \mathrm{H}$, phenyl H), $7.18-7.15(\mathrm{~m}, 1 \mathrm{H}$, phenyl H), $4.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 182.95,171.02,169.63,149.53(\mathrm{q}$, $J=2.0 \mathrm{~Hz}), 137.97,134.60,134.48,131.26,130.34,128.80,127.78,121.90,120.68,120.52(\mathrm{q}, J$ $=258.6 \mathrm{~Hz}$ ), 37.19; ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta:-57.75$; HRMS (ESI): m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 397.02868$, found 397.02808 .


Date for E21. A yellow solid, yield $87 \%$, m.p. $90-91{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta: 8.51-$ $8.48(\mathrm{~m}, 2 \mathrm{H}$, phenyl H), $7.70-7.66(\mathrm{~m}, 1 \mathrm{H}$, phenyl H), $7.57-7.50(\mathrm{~m}, 4 \mathrm{H}$, phenyl H), $7.19(\mathrm{~d}, J=$ 8.0 Hz, 2H, phenyl H), $4.66\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 182.96,171.23,169.60$, $149.03(\mathrm{q}, J=2.0 \mathrm{~Hz}), 134.60,134.6(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 131.26,130.89,128.80,121.41,120.52(\mathrm{q}, J$ $=258.4 \mathrm{~Hz}), 119.26(\mathrm{q}, J=2.5 \mathrm{~Hz}), 37.00 ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:-57.83 ;$ HRMS $(\mathrm{ESI})$ : $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$397.02868, found 397.02817.


Date for E22. A yellowish orange solid, yield $91 \%$, m.p. $59-60^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) $\delta: 8.34-8.31(\mathrm{~m}, 2 \mathrm{H}$, phenyl H), 7.80-7.75 (m, 1H, phenyl H), 7.65-7.61 (m, 3 H , phenyl H),
7.42-7.37 $(\mathrm{m}, 1 \mathrm{H}$, phenyl H), 7.29-7.24 (m, 1H, phenyl H), 7.23-7.20 (m, 1H, phenyl H), $4.75(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $d_{6}$ ) $\delta: 182.74,171.20,169.08,160.57(\mathrm{~d}, J=247.5 \mathrm{~Hz})$, $134.51,134.25,131.62(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 130.70,130.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 128.76,124.72(\mathrm{~d}, J=3.0$ $\mathrm{Hz}), 122.94(\mathrm{~d}, J=14.1 \mathrm{~Hz}), 115.64(\mathrm{~d}, J=20.2 \mathrm{~Hz}), 31.16(\mathrm{~d}, J=3.0 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ( 471 MHz , $\mathrm{CDCl}_{3}$ ) $\delta:-116.31$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]^{+}$331.03696, found 331.03632 .


Date for E23. A greenish-yellow solid, yield $89 \%$, m.p. $66-67^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ : 8.51-8.48 (m, 2H, phenyl H), 7.69-7.65 (m, 1H, phenyl H), 7.56-7.52 (m, 2H, phenyl H), 7.34$7.29(\mathrm{~m}, 1 \mathrm{H}$, phenyl H), $7.24(\mathrm{~s}, 1 \mathrm{H}$, phenyl H), $7.22-7.18(\mathrm{~m}, 1 \mathrm{H}$, phenyl H), 7.03-6.97 (m, 1H, phenyl H), $4.64\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 182.93,171.28,169.53,162.93(\mathrm{~d}$, $J=248.5 \mathrm{~Hz}), 137.99(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 134.56,134.47,131.24,130.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 128.77$, $125.04(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 116.30(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 115.25(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 37.34(\mathrm{~d}, J=2.0 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR (376 MHz, $\mathrm{CDCl}_{3}$ ) $\delta:-112.17$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 331.03696, found 331.03647 .


Date for E24. A yellow solid, yield $90 \%$, m.p. $96-97{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) $\delta: 8.33-$ $8.30(\mathrm{~m}, 2 \mathrm{H}$, phenyl H$), 7.79-7.74(\mathrm{~m}, 1 \mathrm{H}$, phenyl H), 7.64-7.55(m,4H, phenyl H), 7.23-7.17(m, 2 H , phenyl H), $4.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}\right) \delta: 182.70,171.71,168.82$, $161.67(\mathrm{~d}, J=245.4 \mathrm{~Hz}), 134.46,134.25,132.26(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 131.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 130.66$,
$128.73,115.49(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 36.61 ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:-114.24 ;$ HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]^{+} 331.03696$, found 331.03644 .


Date for E25. A yellowish orange solid, yield $87 \%$, m.p. $103-104{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ) $\delta: 8.34-8.31(\mathrm{~m}, 2 \mathrm{H}$, phenyl H), 7.79-7.75 (m, 1H, phenyl H), 7.71-7.68 (m, 1H, phenyl H), $7.62(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl H), $7.54-7.51(\mathrm{~m}, 1 \mathrm{H}$, phenyl H), $7.40-7.34(\mathrm{~m}, 2 \mathrm{H}$, phenyl H), $4.80\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $d_{6}$ ) $\delta: 182.73,171.07,169.09,134.48$, $134.23,133.50,133.28,131.72,130.67,130.05,129.71,128.74,127.56,35.52 ;$ HRMS (ESI): m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]^{+} 347.00741$, found 347.00681.


Date for E26. A greenish-yellow solid, yield $85 \%$, m.p. $77-78^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ : $8.51-8.48(\mathrm{~m}, 2 \mathrm{H}$, phenyl H), 7.70-7.65 (m, 1H, phenyl H), 7.56-7.52 (m, 2H, phenyl H), $7.48(\mathrm{~s}$, 1 H , phenyl H), 7.39-7.34 (m, 1H, phenyl H), 7.31-7.28 (m, 2H, phenyl H), $4.63\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta: 182.97,171.21,169.58,137.61,134.76,134.58,134.51,131.27$, 130.21, 129.39, 128.79, 128.49, 127.57, 37.27; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{OS}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 347.00741$, found 347.00677 .


Date for E27. A yellowish orange solid, yield $90 \%$, m.p. $106-108{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ) $\delta: 8.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl H), $7.79-7.75(\mathrm{~m}, 1 \mathrm{H}$, phenyl H), $7.64-7.61(\mathrm{~m}, 2 \mathrm{H}$,
phenyl H), $7.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl H), $7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl H), $4.71(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ( $\left.101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta: 182.69,171.58,168.89,135.23,134.46,134.24,132.45$, 131.09, 130.66, 128.72, 128.62, 36.57; HRMS (ESI): m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 347.00741, found 347.00681.


Date for E28. A yellowish solid, yield $88 \%$, m.p. $105-106{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ) $\delta$ : 8.35-8.32 (m, 2H, phenyl H), 7.80-7.76 (m, 1H, phenyl H), 7.72-7.69 (m, 2H, phenyl H), 7.65$7.61(\mathrm{~m}, 2 \mathrm{H}$, phenyl H), 7.43-7.39(m, 1H, phenyl H), 7.32-7.28 (m, 1H, phenyl H), 4.80 (s, 2H, $\left.\mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ( $\left.101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta: 182.75,171.05,169.12,134.92,134.51,134.25,133.02$, 131.79, 130.70, 130.27, 128.76, 128.16, 124.25, 38.16; HRMS (ESI): m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]^{+} 390.95689$, found 390.95636 .


Date for E29. A yellow solid, yield $84 \%$, m.p. $97-98{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta: 8.51-$ $8.48(\mathrm{~m}, 2 \mathrm{H}$, phenyl H), 7.70-7.65 (m, 1H, phenyl H), $7.63(\mathrm{~s}, 1 \mathrm{H}$, phenyl H), 7.56-7.52 (m, 2H, phenyl H), 7.45-7.41 (m, 2H, phenyl H), $7.22\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, phenyl H), $4.62\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta: 182.95,171.17,169.58,137.88,134.57,134.50,132.27,131.40$, 131.26, 130.47, 128.79, 128.04, 122.89, 37.19; HRMS (ESI): m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{OS}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 390.95689$, found 390.95630 .


Date for E30. A yellowish orange solid, yield $89 \%$, m.p. $103-104{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ) $\delta: 8.33-8.31(\mathrm{~m}, 2 \mathrm{H}$, phenyl H), 7.79-7.75 (m, 1H, phenyl H), 7.65-7.61 (m, 2H, phenyl H), 7.59-7.56 (m, 2H, phenyl H), 7.52-7.48 (m, 2H, phenyl H), $4.69\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $d_{6}$ ) $\delta: 183.16,172.04,169.37,136.14,134.93,134.71,132.01,131.89$, 131.13, 129.20, 121.48, 37.09; HRMS (ESI): m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]^{+} 390.95689$, found 390.95618 .
2. Copies of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR and HRMS of the title compounds


```
\
```



23 \#39 RT: 0.39 AV: $1 \mathrm{NL}: 5.01 \mathrm{E}+008$
T: FTMS + p ESI Full ms [120.0000-1800.0000]


Figure S1. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS for $\mathbf{E} 1$.




$\stackrel{\underset{i}{i}}{\stackrel{i}{i}}$

| ng |
| :---: | :---: |
| $\stackrel{m}{m}$ |
| $\stackrel{m}{m}$ |



24 \#49 RT: 0.48 AV: 1 NL: 1.05E+009
T: FTMS + p ESI Full ms [120.0000-1800.0000]


Figure S2. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS for $\mathbf{E 2}$.


##  <br> 



25 \#57 RT: 0.56 AV: 1 NL: 1.24E+009
T: FTMS +p ESI Full ms [120.0000-1800.0000]


Figure S3. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS for $\mathbf{E 3}$.
 $1 \|$






Figure S4. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS for $\mathbf{E 4}$.



34 \#45 RT: 0.45 AV: $1 \mathrm{NL}: 4.77 \mathrm{E}+007$
T: FTMS + p ESI Full ms [120.0000-1800.0000]


Figure S5. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS for E5.


DL-26 \#415 RT: 4.01 AV: 1 NL: 6.16E+007 T: FTMS + p ESI Full ms [150.0000-2200.0000]


Figure S6. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS for $\mathbf{E 6}$.



```
&%M"&
```




27 \#59 RT: 0.58 AV: 1 NL: 4.74E+008
T: FTMS + p ESI Full ms [120.0000-1800.0000]


Figure S7. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS for $\mathbf{E} 7$.





$\mid$




Figure S8. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS for E8.



23 \#69 RT: 0.72 AV: 1 NL: 2.35E+007
T: FTMS + p ESI Full ms [120.0000-1800.0000]
313.04599
$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ON}_{2}{ }^{32} \mathrm{~S}_{2}=313.04638$


Figure S9. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS for $\mathbf{E 9}$.


27 \#41 RT: 0.42 AV: 1 NL: 2.43E+007
T: FTMS + p ESI Full ms [120.0000-1800.0000]
327.06158
$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ON}_{2}{ }^{32} \mathrm{~S}_{2}=327.06203$


Figure S10. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS for $\mathbf{E 1 0}$.



28 \#77 RT: 0.78 AV: 1 NL: 3.40E+007
T: FTMS + p ESI Full ms [120.0000-1800.0000]


Figure S11. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS for E11.




29 \#41 RT: 0.41 AV: 1 NL: 1.75E+007
T: FTMS + p ESI Full ms [120.0000-1800.0000]
327.06161
$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ON}_{2}{ }^{32} \mathrm{~S}_{2}=327.06203$


Figure S12. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS for $\mathbf{E 1 2}$.


## 



29 \#51 RT: 0.58 AV: 1 NL: 4.81E+006
T: FTMS + p ESI Full ms [150.0000-2200.0000]


Figure S13. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS for E13.



28 \#55 RT: 0.54 AV: 1 NL: 1.43E+008
T: FTMS + p ESI Full ms [120.0000-1800.0000]


Figure S14. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS for E14.




30 \#5 RT: 0.05 AV: 1 NL: 3.63E+005
T: FTMS + p ESI Full ms [120.0000-1800.0000]


Figure S15. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS for E15.


$\qquad$
20 \#57 RT: 0.65 AV: 1 NL: 2.00E+008
T: FTMS + p ESI Full ms [120.0000-1800.0000]


Figure S16. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR and HRMS for $\mathbf{E} 16$.



21 \#51 RT: 0.55 AV: 1 NL: 1.63E+008
T: FTMS + p ESI Full ms [120.0000-1800.0000]


Figure S17. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR and HRMS for $\mathbf{E} 17$.


| 10 | -10 | -20 | -30 | -40 | -50 | -60 | -70 <br> $\mathrm{fl}(\mathrm{ppm})$ | -80 | -90 | -100 | -110 | -120 | -130 | -140 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

22 \#55 RT: 0.57 AV: 1 NL: 1.30E+008
T: FTMS + p ESI Full ms [120.0000-1800.0000]


Figure S18. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR and HRMS for $\mathbf{E} 18$.



36 \#63 RT: 0.62 AV: 1 NL: 2.40E+008
T: FTMS + p ESI Full ms [120.0000-1800.0000]


Figure S19. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR and HRMS for E19.

$\qquad$


37 \#61 RT: 0.60 AV: 1 NL: 2.02E+008
T: FTMS + p ESI Full ms [120.0000-1800.0000]


Figure S20. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR and HRMS for E20.



$-37.00$

$\left.\begin{array}{llllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \underset{f l}{100}(\mathrm{ppm})\end{array}\right)$


38 \#63 RT: 0.62 AV: 1 NL: 7.31E+007
T: FTMS + p ESI Full ms [120.0000-1800.0000]


Figure S21. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR and HRMS for E21.







30 \#61 RT: 0.61 AV: 1 NL: 1.33E+008
T: FTMS + p ESI Full ms [120.0000-1800.0000]


Figure S22. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR and HRMS for E22.



31 \#63 RT: 0.63 AV: 1 NL: 7.14E+007
T: FTMS + p ESI Full ms [120.0000-1800.0000]


Figure S23. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR and HRMS for $\mathbf{E} 23$.




32 \#55 RT: 0.55 AV: 1 NL: $5.64 \mathrm{E}+007$
T: FTMS + p ESI Full ms [120.0000-1800.0000]


Figure S24. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR and HRMS for $\mathbf{E} 24$.

## 








17 \#67 RT: 0.77 AV: 1 NL: 4.74E+007
T: FTMS +p ESI Full ms [120.0000-1800.0000]
347.00681
$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ON}_{2}{ }^{35} \mathrm{Cl}^{32} \mathrm{~S}_{2}=347.00741$


Figure S25. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS for E25.



18 \#55 RT: 0.63 AV: 1 NL: 4.33E+007
T: FTMS + p ESI Full ms [120.0000-1800.0000]


Figure S26. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS for E26.


|  |  |  |
| :---: | :---: | :---: |

$\stackrel{i n}{i n}$



19 \#55 RT: 0.63 AV: 1 NL: 3.57E+007 T: FTMS + p ESI Full ms [120.0000-1800.0000]


Figure S27. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS for E27.



24 \#77 RT: 0.80 AV: 1 NL: 2.69E+007
T: FTMS + p ESI Full ms [120.0000-1800.0000]


Figure S28. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS for $\mathbf{E 2 8}$.



Figure S29. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS for 29.



26 \#71 RT: 0.72 AV: 1 NL: 2.14E+007
T: FTMS + p ESI Full ms [120.0000-1800.0000]


Figure S30. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS for $\mathbf{E 3 0}$.

## 3. Crystallographic data of compound E27

Table S1
Crystallographic data of compound E27

| Empirical formula | $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{OS}_{2}$ |
| :---: | :---: |
| Formula weight | 346.84 |
| Temperature/K | 273.15 |
| Crystal system | triclinic |
| Space group | P-1 |
| $\mathrm{a} / \AA$ | 8.1736(4) |
| b/ $\AA$ | 8.9413(4) |
| c/ $\AA$ | 12.3309(6) |
| $\alpha /{ }^{\circ}$ | 105.112(2) |
| $\beta /{ }^{\circ}$ | 93.310(2) |
| $\gamma^{\prime}$ | 111.564(2) |
| Volume $/ \AA^{3}$ | 797.19(7) |
| Z | 2 |
| $\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$ | 1.445 |
| $\mu / \mathrm{mm}^{-1}$ | 4.585 |
| $F(000)$ | 356.0 |
| Crystal size/mm ${ }^{3}$ | $0.26 \times 0.25 \times 0.22$ |
| Radiation | $\operatorname{CuK} \alpha(\lambda=1.54178)$ |


| Index ranges | $-10 \leq \mathrm{h} \leq 10,-11 \leq \mathrm{k} \leq 11,-15 \leq 1 \leq 15$ |
| :---: | :---: |
| Reflections collected | 20086 |
| Independent reflections | $3126\left[\mathrm{R}_{\text {int }}=0.0672, \mathrm{R}_{\text {sigma }}=0.0427\right]$ |
| Data/restraints/parameters | 3126/0/199 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.119 |
| Final R indexes [ $\mathrm{I}>=2 \sigma(\mathrm{I})$ ] | $\mathrm{R}_{1}=0.0953, \mathrm{wR}_{2}=0.2294$ |
| Final R indexes [all data] | $\mathrm{R}_{1}=0.0984, \mathrm{wR}_{2}=0.2356$ |
| Largest diff. peak/hole / e $\AA^{-3}$ | 0.81/-1.25 |

## 4. The regression equation of the title compounds with $\mathrm{EC}_{50}$ values

Table S2

The regression equation of the partial title compounds, triadimefon and tebuconazole with $\mathrm{EC}_{50}$ values against

Gibberella saubinetii in vitro ${ }^{\text {a }}$

| Compound no. |  | G. saubinetii |  |
| :---: | :---: | :---: | :---: |
| E1 | $\mathrm{EC}_{50}(\mu \mathrm{~g} / \mathrm{mL})$ | Regression equation | $\mathrm{R}^{2}$ |
| E2 | $30.5 \pm 1.4$ | $\mathrm{y}=1.2451 \mathrm{x}+3.152$ | 0.970 |
| E3 | $21.9 \pm 1.3$ | $\mathrm{y}=1.0181 \mathrm{x}+3.6357$ | 0.988 |
| triadimefon | $21.5 \pm 0.8$ | $\mathrm{y}=1.1504 \mathrm{x}+3.4666$ | 0.892 |
| tebuconazole | $14.8 \pm 0.5$ | $\mathrm{y}=1.3542 \mathrm{x}+3.4166$ | 0.986 |

[^0]
## Table S3

The regression equation of the partial title compounds, triadimefon and tebuconazole with $\mathrm{EC}_{50}$ values against

Verticillium dahliae in vitro ${ }^{\text {a }}$

|  |  | V. dahliae |  |
| :---: | :---: | :---: | :---: |
| Compound no. |  |  |  |
|  | $\mathrm{EC}_{50}(\mathrm{\mu g} / \mathrm{mL})$ | Regression equation | $\mathrm{R}^{2}$ |
| E2 | $48.1 \pm 0.9$ | $\mathrm{y}=2.2908 \mathrm{x}+1.1459$ | 0.987 |
| E3 | $45.4 \pm 0.9$ | $\mathrm{y}=2.1678 \mathrm{x}+1.4084$ | 0.997 |
| triadimefon | $41.6 \pm 0.9$ | $\mathrm{y}=2.04 \mathrm{x}+1.6964$ | 0.896 |
| tebuconazole | $2.9 \pm 0.2$ | $\mathrm{y}=0.9237 \mathrm{x}+4.567$ | 0.834 |

${ }^{\mathrm{a}}$ Values are means $\pm$ SD of three replicates.

Table S4

The regression equation of the partial title compounds, triadimefon and tebuconazole with $\mathrm{EC}_{50}$ values against Alternaria solani in vitro ${ }^{\text {a }}$

|  |  | A. solani |  |
| :---: | :---: | :---: | :---: |
| Compound no. |  | Regression equation | $\mathrm{R}^{2}$ |
| E1 | $61.7 \pm 2.0$ | $\mathrm{y}=2.1879 \mathrm{x}+1.0828$ | 0.977 |
| E2 | $67.5 \pm 1.1$ | $\mathrm{y}=2.369 \mathrm{x}+0.6663$ | 0.921 |
| E3 | $63.4 \pm 0.5$ | $\mathrm{y}=1.4069 \mathrm{x}+2.4651$ | 0.978 |
| triadimefon | $45.3 \pm 0.6$ | $\mathrm{y}=0.8472 \mathrm{x}+3.5972$ | 0.992 |
| tebuconazole | $1.3 \pm 0.0$ | $\mathrm{y}=1.4719 \mathrm{x}+4.8591$ | 0.9746 |

[^1]The regression equation of the partial title compounds, triadimefon and tebuconazole with $\mathrm{EC}_{50}$ values against

Gibberella zeae in vitro ${ }^{\text {a }}$

|  |  | G. zeae |  |
| :---: | :---: | :---: | :---: |
| Compound no. |  |  |  |
| E1 | $\mathrm{EC}_{50}(\mu \mathrm{~g} / \mathrm{mL})$ | Regression equation | $\mathrm{R}^{2}$ |
| E2 | $59.8 \pm 0.5$ | $\mathrm{y}=2.2502 \mathrm{x}+1.0022$ | 0.972 |
| E3 | $42.8 \pm 0.4$ | $\mathrm{y}=1.4554 \mathrm{x}+2.6256$ | 0.969 |
| triadimefon | $37.3 \pm 0.9$ | $\mathrm{y}=1.144 \mathrm{x}+3.2018$ | 0.938 |
| tebuconazole | $16.9 \pm 0.1$ |  | $\mathrm{y}=1.0026 \mathrm{x}+3.7695$ |

${ }^{\mathrm{a}}$ Values are means $\pm$ SD of three replicates.

## Table S6

The regression equation of the partial title compounds, triadimefon and tebuconazole with $\mathrm{EC}_{50}$ values against

Thanatephorus cucumeris in vitro ${ }^{\text {a }}$

|  |  | T. cucumeris |  |
| :---: | :---: | :---: | :---: |
| Compound no. |  | Regression equation | $\mathrm{R}^{2}$ |
| E1 | $32.8 \pm 1.3$ | $\mathrm{y}=2.176 \mathrm{x}+1.7021$ | 0.975 |
| E2 | $22.2 \pm 0.7$ | $\mathrm{y}=1.9322 \mathrm{x}+2.3989$ | 0.971 |
| E3 | $39.6 \pm 1.3$ | $\mathrm{y}=1.6096 \mathrm{x}+2.4282$ | 0.994 |
| triadimefon | $11.0 \pm 0.7$ | $\mathrm{y}=0.8934 \mathrm{x}+4.0703$ | 0.990 |
| tebuconazole | $0.6 \pm 0.1$ | $\mathrm{y}=1.184 \mathrm{x}+5.2672$ | 0.9941 |

[^2]
[^0]:    ${ }^{a}$ Values are means $\pm$ SD of three replicates.

[^1]:    ${ }^{\text {a }}$ Values are means $\pm$ SD of three replicates.

[^2]:    ${ }^{\mathrm{a}}$ Values are means $\pm \mathrm{SD}$ of three replicates.

