Characteristic Vibrational Frequencies of Osmium(II) Nitrosyl Complexes Probed by Raman Spectroscopy and DFT calculations.

Electronic Supplementary Information

Nicolas Bélanger-Desmarais,^a Anatolie Gavriluta,^b Jean Bernard Tommasino,^b

Christian Reber^{*a} and Dominique Luneau^{*b}

* Corresponding authors

^a Département de Chimie, Université de Montréal, Montréal, H3C 3J7, Québec,

Canada

E-mail: christian.reber@umontreal.ca

Tel: +1 514-340-4711

^b Université Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces

(UMR 5615), Campus de La Doua, 69622 Villeurbanne Cedex, France

E-mail: dominique.luneau@univ-lyon1.fr

Fax: +33 472 440 618

Tel: +33 472 431 418

Table of Contents

Table S2. Calculated optimized structure of singlet ground state of trans-[Os(NO)Cl4(Hpz)]...... 3 Table S3. Comparison of selected bond lengths and angles of *cis*-(n-Bu₄N)[Os(NO)Cl₄(Hpz)] obtained from the published crystal structure with the calculated values obtained by DFT calculation on the isolated anionic complex in the gas phase at the B3LYP/MWB60(Os)/6-31G*(other atoms) Table S4. Comparison of selected bond lengths and angles of trans-(n-Bu₄N)[Os(NO)Cl₄(Hpz)] obtained from the published crystal structure with the calculated values obtained by DFT calculation on the isolated anionic complex in the gas phase at the B3LYP/MWB60(Os)/6-31G*(other atoms) S1. Temperature-dependent Raman spectra (λ_{exc} = 785 nm) of *cis*-(n-Figure Figure S2. Temperature-dependent Raman spectra (λ_{exc} = 785 nm) of trans-(n-S3. Temperature-dependent Raman spectra (λ_{exc} = 785 nm) of *cis*-(n-Figure Figure S4. Temperature-dependent Raman spectra (λ_{exc} = 785 nm) of trans-(n-Figure S5. Temperature-dependent Raman spectra (λ_{exc} = 785 nm) of *cis*-(n-Figure S6. Temperature-dependent Raman spectra (λ_{exc} = 785 nm) of *mer*(CI), *trans*-(NO,O)-(n-Bu₄N)₂[Os(NO)Cl₃(ox)] (6)......10 Figure S7. Temperature-dependent Raman spectra (λ_{exc} = 785 nm) of *mer*(Cl), *trans*-(NO,O)-(n-

Atoms	Х	Y	Z
Os	-0.42923200	0.01506100	0.05987000
CI	-0.15702200	-2.46797100	0.12615500
CI	-0.08880500	-0.10314300	-2.31645800
CI	-0.56539300	2.44662900	-0.12058500
CI	-2.80471200	-0.19662500	-0.27854200
0	-0.69512900	0.10496300	2.96423800
Ν	1.71027600	0.17027800	0.12584200
Ν	2.46912200	-0.93829100	0.05392300
Н	1.95321000	-1.82506200	0.00069300
Ν	-0.60154300	0.07401100	1.79635100
С	3.77902900	-0.63064100	0.02879700
Н	4.53231400	-1.40272400	-0.03278200
С	3.87515000	0.75323400	0.09689500
Н	4.77672200	1.34770400	0.09923600
С	2.54761700	1.21136200	0.15213100
Н	2.13546300	2.20886400	0.18937900

Table S1. Calculated optimized structure of singlet ground state of *cis*-[Os(NO)Cl₄(Hpz)]⁻.

Table S2. Calculated optimized structure of singlet ground state of *trans*-[Os(NO)Cl₄(Hpz)]⁻.

Atoms	Х	Y	Z
Os	-0.50587800	0.00626200	0.00000400
CI	-0.28297400	0.01029800	2.42559500
CI	-0.17444800	-2.44903600	-0.00000500
CI	-0.28503900	0.00972800	-2.42582500
CI	-0.52941900	2.43412200	-0.00011800
0	-3.39905200	-0.23308800	0.00160700
Ν	1.68224900	0.15122000	-0.00066700
Ν	2.44225300	-0.95680700	-0.00003300
Н	1.93472300	-1.84681400	0.00042700
Ν	-2.23584400	-0.13188300	0.00082400
С	3.75251800	-0.65282400	0.00014900
Н	4.50402300	-1.42900600	0.00069000
С	3.84901400	0.73235300	-0.00044200
Н	4.75018300	1.32727000	-0.00056700
С	2.52144200	1.19092600	-0.00089400
Н	2.11372800	2.19000200	-0.00143600

Table S3. Comparison of selected bond lengths and angles of *cis*-(n-Bu₄N)[Os(NO)Cl₄(Hpz)] obtained from the published crystal structure with the calculated values obtained by DFT calculation on the isolated anionic complex in the gas phase at the B3LYP/MWB60(Os)/6-31G*(other atoms) level of theory (Gaussian 09).

Geometric parameters	Exp.	Calc.	Diff. (%)
Os-N(Hpz) bond length (Å)	2.082(3)	2.146	3.1
Average of Os-Cleq bond lengths (Å)	2.367(1)	2.450	3.5
Os-Cl _{ax} bond length (Å)	2.3695(11)	2.404	1.4
Os-N(NO) bond length (Å)	1.733(4)	1.746	0.8
N-O bond length (Å)	1.153(4)	1.172	1.7
Os-N-O angle (°)	178.1(3)	178.8	0.4

Table S4. Comparison of selected bond lengths and angles of *trans-(n-*Bu₄N)[Os(NO)Cl₄(Hpz)] obtained from the published crystal structure with the calculated values obtained by DFT calculation on the isolated anionic complex in the gas phase at the B3LYP/MWB60(Os)/6-31G*(other atoms) level of theory (Gaussian 09).

Geometric parameters	Exp.	Calc.	Diff. (%)
Os-N(Hpz) bond length (Å)	2.116(3)	2.193	3.6
Average of Os-Cl _{eq} bond lengths (Å)	2.368(1)	2.444	3.2
Os-N(NO) bond length (Å)	1.736(4)	1.735	-0.1
N-O bond length (Å)	1.136(4)	1.168	2.8
Os-N-O angle (°)	176.6(4)	179.6	1.7

Figure S1. Temperature-dependent Raman spectra (λ_{exc} = 785 nm) of *cis*-(*n*-Bu₄N)[Os(NO)Cl₄(Hpz)] (1).

Figure S2. Temperature-dependent Raman spectra (λ_{exc} = 785 nm) of *trans-(n-Bu*₄N)[Os(NO)Cl₄(Hpz)] (2).

Figure S3. Temperature-dependent Raman spectra (λ_{exc} = 785 nm) of *cis*-(n-Bu₄N)[Os(NO)Cl₄(Hind)] (3).

Figure S4. Temperature-dependent Raman spectra (λ_{exc} = 785 nm) of *trans*-(n-Bu₄N)[Os(NO)Cl₄(Hind)] (4).

Figure S5. Temperature-dependent Raman spectra (λ_{exc} = 785 nm) of *cis*-(n-Bu₄N)[Os(NO)Cl₄(Him)] (5).

Figure S6. Temperature-dependent Raman spectra (λ_{exc} = 785 nm) of *mer*(Cl), *trans*-(NO,O)-(n-Bu₄N)₂[Os(NO)Cl₃(ox)] (6).

Figure S7. Temperature-dependent Raman spectra (λ_{exc} = 785 nm) of *mer*(CI), *trans*-(NO,O)-(n-Bu₄N)[Os(NO)Cl₃(gly)] (7).