Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

A highly selective A-π-A' "turn-on" fluorescent probe for hypochlorite in tap

water

Wenshuai Cheng, Chunping Ren, Shuang Liu, Wenshuo Jiang, Xiuna Zhu, Wenxuan

Jia, Jianbo Cheng and Zhenbo Liu*

College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005,

People's Republic of China

*Corresponding author: zhenboliu@foxmail.com

Fig. S2 ¹H-NMR data of BODIPY-CHO

Fig. S5 MS data of BON with ClO-

Fig. S6 Cyclic voltammograms of 1 mM **BON** (a) and **BODIPY-CHO** (b) measured in dichloromethane solution, containing 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆) as the supporting electrolyte at room temperature. The glassy carbon electrode as the working electrode. The Ag/Ag^+ electrode as the reference

electrode. The platinum wire as the counter electrode.

Fig. S7 Photoinduced electron transfer (PET) mechanism between BODIPY moiety

and phenylamino.

Tab. S1	Quantum yields of BODIPY-CHO in different solvents.			
Solvents	EtOH	DCM	Toluene	
(φ)	8.9%	21.4%	35.6%	

determined nom spectroscopy of dyes bort, bobh 1-eno.							
dye	$E_{\rm red}^{\rm onset}$	$E_{\rm ox}^{\rm onset}$	LUMO	НОМО	E_{g}^{e}		
	(V)	(V)	(eV)	(eV)	(eV)		
BON	-1.383	1.356	-3.027	-5.766	2.739		
BODIPY-CHO	-1.404	1.523	-3.006	-5.906	2.927		

Tab. S2. Electrochemical data acquired at 50 mV/s, and HOMO-LUMO Gaps determined from spectroscopy of dyes **BON**. **BODIPY-CHO**.^a

^a E_{red}^{onset} = the onset reduction potentials; E_{ox}^{onset} = the onset oxidation potentials; E_{LUMO} = -e(E_{red}^{onset} - $E_{Fc/Fc+}$ +4.80);

By assuming the energy level of ferrocene/ferrocenium (Fc/Fc^+) to be 4.8 eV below the vacuum level ¹, E_{Fc/Fc^+} is the potential of Fc/Fc^+ against the Ag/Ag+ reference electrode which is measured to be 0.39 eV ²; $E_{HOMO} = -$

 $e(E_{ox}^{onset} - E_{Fc/Fc+} + 4.80); E_g^e = bandgap$, obtained from the intercept of the electrochemical data; $E_g^e = E_{LUMO}$ -

 $E_{HOMO}. \\$

Water samples	ClO ⁻ spiked (µM)	Recovered (µM)	Recovery (%)			
Tap water sample 1	1	1.8 ± 0.02	91.0			
Tap water sample 2	2	2.7±0.01	90.5			
Tap water sample 3	3	3.7±0.02	93.6			

 Tab. S3
 Results of spiked recovery of hypochlorite in tap water

References

- 1. M. Soltani, R. Minakar, H. R. Memarian and H. Sabzyan, *J. Phys. Chem. A*, 2019, **123**, 2820-2830.
- 2. M. X. Lu, W. Wang, L. Y. Liang, S. H. Yan and Q. D. Ling, *Polym. Bull.*, 2017, 74, 603-614.