Supporting Information

Plant polyphenols involved coordination assemblies derived Mo₃Co₃C/Mo₂C/Co@NC with phase regulation and interface engineering for hydrogen evolution reaction electrocatalysis

Yu-Hang Zhao,^a Tao Zhang,^a Xiao-Feng Wang,^b Shao-Jie Li,^a Yu Pan,^c Yihan Wang,^a Xue-Zhi Song^{*,a} and Zhenquan Tan^{*,a}

^aState Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Panjin Campus, Panjin 124221, China

^bKey Laboratory of Materials Modification by Laser Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian, 116024, China

^cInstitute of Functional Textiles and Advanced Materials, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, China

Email address: songxz@dlut.edu.cn tanzq@dlut.edu.cn

Fig. S1 XRD patterns of Co-TA, CoMo-TA and CoMo-TA₂.

Fig. S2 FTIR images of Co-TA, CoMo-TA and CoMo-TA₂.

Fig. S3 TGA images of Co-TA, CoMo-TA and CoMo-TA₂.

Fig. S4 SEM images of Mo₃Co₃C/Co@NC.

Fig. S5 SEM images of Co@NC.

Fig. S6 EDS images of $Mo_3Co_3C/Mo_2C/Co@NC$ (a) and $Mo_3Co_3C/Co@NC$ (b).

Fig. S7 SAED image of Mo₃Co₃C/Mo₂C/Co@NC.

Fig. S8 Adsorption-desorption isotherm of Mo₃Co₃C/Mo₂C/Co@NC.

Fig. S9 Full XPS spectrum of Mo₃Co₃C/Mo₂C/Co@NC.

Fig. S10 The cyclic voltammograms of Mo₃Co₃C/Mo₂C/Co@NC, Mo₃Co₃/Co@NC and Co@NC.

	Co	Мо	С	Ν
Mo ₃ Co ₃ C/Mo ₂ C/Co@NC	18.61	12.93	46.05	22.41
Mo ₃ Co ₃ C/Co@NC	5.91	4.19	63.66	26.24

Table S2. Comparison of the HER performance for Mo₃Co₃C/Mo₂C/Co@NC catalyst with other electrocatalysts in alkaline solution.

Catalyst	Loading mass	η_{10}	Tafel slope	Ref
	(mg cm ⁻²)	[mV]	[mV dec ⁻¹]	
Mo ₃ Co ₃ C/Mo ₂ C/Co@NC	0.326	211	96	This work
Mo ₂ C/NCS-6	0.0192	142	56.1	1
AMP 800/12(Mo ₂ C)	0.461	197.9	69.2	2
Co ₂ P/Mo ₃ Co ₃ C/Mo ₂ C@C	0.8	154	65	3
NiMo ₂ C@C	0.15	181	84	4
C-MoS ₂	0.343	200	53	5
2%Co-Mo ₂ C	0.272	243	89	6
$Co_6Mo_6C_2/Co_2Mo_3O_8@NC$	0.8	220	104.7	7
Mo ₂ C/N-rGO	0.25	142	101.78	8

Reference

1. Y. Hui, C. Yingxi, W. Chunbao and W. Guangjin, J. Alloys Compd., 2020, 842, 155939.

2. R. A. Mir and O. P. Pandey, Sustain. Energy Fuels, 2020, 4, 655-669.

3. X. Li, X. Wang, J. Zhou, L. Han, C. Sun, Q. Wang and Z. Su, *J. Mater. Chem. A*, 2018, **6**, 5789-5796.

4. X. Li, L. Yang, T. Su, X. Wang, C. Sun and Z. Su, J. Mater. Chem. A, 2017, 5, 5000-5006.

5. J. Feng, H. Zhou, J. Wang, T. Bian, J. Shao and A. Yuan, *Int. J. Hydrogen Energy*, 2018, **43**, 20538-20545.

6. M. Chen, Y. Ma, Y. Zhou, C. Liu, Y. Qin, Y. Fang, G. Guan, X. Li, Z. Zhang and T. Wang, *Catalysts*, 2018, **8**, 294.

7. R. Liu, M. Anjass, S. Greiner, S. Liu, D. Gao, J. Biskupek, U. Kaiser, G. Zhang and C. Streb, *Chem. Eur. J.*, 2020, **26**, 4157-4164.

8. G. Zhang, Y. Zhou and F. Yang, *Electrochim. Acta*, 2019, **299**, 672-681.