Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

1	Supporting Information
2	
3	Sustainable and reusable electrospun g-C ₃ N ₅ /MIL-
4	101(Fe)/poly(acrylonitrile-co-maleic acid) nanofiber for
5	photocatalytic degradation of carbamazepine
6	
7	
8	Dongying Zhu, ^{a,b‡} Zhujun Huang, ^{a,b‡} Haiyan Wang, ^b Qiujun Lu, ^b Guihua Ruan, ^a
9	Chenxi Zhao, ^b Fuyou Du ^{a, b*}
10	
11	^a Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional
12	Materials, College of Chemistry and Bioengineering, Guilin University of
13	Technology, Guilin 541004, China
14	^b College of Biological and Environmental Engineering, Changsha University,
15	Changsha 410022, China
16	
17	
18	[‡] Dongying Zhu and Zhujun Huang contributed equally to this work.

20 Text S1

21 Characteristics of materials

The microstructure and surface morphology of materials were tested by scanning 22 electron microscope (SEM, Hitachi SU8000, Japan) and transmission electron 23 microscope (TEM, Tecnai G2 F30, PEI, USA), respectively. The elemental mappings 24 and chemical compositions of the composites were performed by an energy-dispersive 25 X-ray spectrometer (EDX) equipped on SEM. The surface area, pore volume and size 26 of the photocatalysts were estimated by Micromeritics TriStar II 3020 analyzer 27 (TriStar II 3020, Micromeritics Instrument Corporation, USA). The crystal phases of 28 the composites were measured by X-ray diffraction (XRD, Brucker D8 Advance, 29 Germany) with a Cu K_{α} radiation. The patterns of X-ray photoelectron spectroscopy 30 were measured on a K-Alpha spectrometer (XPS, Thermo escalab 250Xi, Thermo 31 Scientific, USA). The The chemical bonds analysis was investigated by the Nicolet 32 Nexus 470 FT-IR spectrometer (Thermo Electron Corporation, USA). The active 33 species to degrade carbamazepine were detected through trapping by BQ, t-BuOH, 34 and EDTA-2Na (see Text S2). The characteristic signals of hydroxyl radicals (•OH) 35 and superoxide anion radicals ($\bullet O_2^-$) were identified by electron spin resonance (ESR, 36 Bruker A300-10/12, Germany), respectively. Photocatalytic degradation tests were 37 carried out at room temperature under visible light irradiation (300W Xe lamp, CEL-38 HXF300, Aulight Co. Ltd., China) that equipped with a 380 nm cut-off filter ($\lambda > 380$ 39 nm). 40

42 Text S2

43 Trapping experiments of active species

To probe the active species in degradation process, different scavengers (0.4 44 added sample solution besides mmol) were in E-spun g-C₃N₅/MIL-45 101(Fe)/PANCMA (20 mg), deionized water (20 mL) and carbamazepine solution (20 46 mL, 40 mg/L). Here benzoquinone (BQ, 0.5 mmol/L), tertiary butanol (t-BuOH, 5.0 47 mmol/L), and ethylene diamine tetraacetic acid disodium salt (EDTA-2Na, 1.0 48 mmol/L) were chosen as radical scavengers to capture superoxide radicals ($\bullet O_2$), 49 hydroxyl radicals (\bullet OH), and holes (h^+), respectively. 50

51 Text S3

52 LC-UV-MS analysis

UltiMate 3000 UHPLC (Thermo Fisher Scientific, USA), equipped with the Zorbax Eclipse Plus C18 column (4.6×250 mm, 5 µm), was used to detect the residual carbamazepine in sample solution. The possible intermediates of carbamazepine during the degradation process were identified by LC-MS (Q Exactive Focus MS, Thermo Scientific, USA).

For LC analysis, the mobile phase was composed of water (A, 60%) and acetonitrile (B, 40%) at a flow rate of 0.2 mL/min. The volume was 5 μ L. The detection wavelength was 285 nm, and the column temperature was 30 °C. The typical LC chromatograms are shown in Fig. S2, and the obtained calibration curve was presented in Table S2.

For MS analysis, the MS analysis parameters were operated in the range of 50500 m/z with a positive ion mode using ESI ion source. The sheath gas, aux gas,

spray voltage, capillary temperature, and aux gas heater temperature was 35
arbitrary units, 10 arbitrary units, 3500 V, 350 °C, and 300 °C, respectively. The
obtained total ion chromatograms and MS fragments (m/z) were shown in Figs. S3
and S4, respectively.

70 Tables

71

- 72 Table S1 Calibration curve, linearity, linear regression coefficient (R^2) , and limit of
- 73 detection (LOD) for determination of carbamazepine, ciprofloxacin, and tetracycline
- 74 by HPLC-UV method

Compound	Detection	Calibration curve	Linearity	D 2	LOD	RSD
Compound	wavelength		(ng/mL)	K²	(ng/mL)	(%)
Carbamazepine	285 nm	y=18.287x+2292.7	5-1000	0.9992	2.34	1.89
Ciprofloxacin	275 nm	y=11.279x+2457.0	5-1000	0.9999	3.27	2.15
Tetracycline	355 nm	y=5.986x+1511.6	5-1000	0.9998	4.09	3.37

75 *Note*: The limit of detection (LOD) was evaluated on the basis of a signal-to-noise ratio of 3.

77 Table S2 Results of N_2 adsorption-desorption characteristics on the E-spun PANCMA

and g-C₃N₅/MIL-101(Fe)/PANCMA NFs

During	Descustor	PANCM	g-C ₃ N ₅ /	MIL-
Property	Parameter	Α	101(Fe)/PANCMA	
	Single point surface area at P/Po (m^2/g)	24.9760	21.6322	
	BET Surface Area (m ² /g)	25.8848	22.3689	
Surface	t-Plot External Surface Area (m²/g)	26.1887	22.2204	
Area	BJH Adsorption cumulative surface area of pores between 1.7000 nm and 300.0000 nm diameter (m^2/g)	25.036	21.673	
	BJH Desorption cumulative surface area of pores between 1.7000 nm and 300.0000 nm diameter (m^2/g)	46.0199	45.4090	
	Single point adsorption total pore volume of pores less than 130.9985 nm diameter at P/Po=0.985000000 (cm ³ /g)	0.134838	0.091247	
Pore	t-Plot micropore volume (cm ³ /g)	-0.000190	0.000056	
Volume	BJH Adsorption cumulative volume of pores between 1.7000 nm and 300.0000 nm width (cm ³ /g)	0.138315	0.095571	
	BJH Desorption cumulative volume of pores between 1.7000 nm and 300.0000 nm diameter (cm ³ /g)	0.140227	0.097206	
	Adsorption average pore width (4V/A by BET) (nm)	20.83660	16.31683	
Pore Size	BJH Adsorption average pore width (4V/A) (nm)	22.0990	17.6388	
	BJH Desorption average pore width (nm)	12.1884	8.5672	

- 82 TableS 3 Comparison of the developed g-C₃N₅/MIL-101(Fe)/PANCMA nanofibers
- 83 with the other reported photocatalytical materials for removal of carbamazepine
- 84

Matariala	Domorral mode	Time	Removal	Cycle	Referen
Materials	Removal mode	(min)	efficiency	times	cev
α-Fe ₂ O ₃ /MIL-	Photocatalytic	180	100%	1	[42]
101(Cr)	degradation	180	100%	4	
	Photocatalytic	20	050/	4	Г <i>4</i> 2 1
$\text{DIS-PDI-}I @ IIO_2$	degradation	30 95%		4	[43]
TiO ₂ /carbon	Photocatalytic	60	77.63%-		[45]
dots/polyaniline	degradation	00	83.29%	3	[43]
Co ₃ O ₄ /CuBi ₂ O ₄ /S	Photocatalytic	200	76 10/	Λ	[46]
mVO ₄	degradation	300	/0.1%	4	[40]
	Photocatalytic	60	97.86%	1	[47]
AgiO ₃ /BivO ₄	degradation	00			[4/]
E-spun g-					
C ₃ N ₅ /MIL-	Photocatalytic	40	94.2%	15	This
101(Fe)/PANCMA	degradation	40			work
nanofibers					

- Figure S1 The appearance of g-C₃N₅/MIL-101(Fe) composites (A), E-spun
 PANCMA (B), and E-spun g-C₃N₅/MIL-101(Fe)/PANCMA (C) nanofibers

Figure S2 Typical HPLC-UV chromatograms of carbamazepine (A), tetracycline (B),
and ciprofloxacin (C) before and after photocatalytical degradation with E-spun gC₃N₅/MIL-101(Fe)/PANCMA NFs. The orignal concentration spiked in sample
solution was 200 ng/mL.

105 Figure S3 Typical total ion chromatograms of degradation products by photocatalytic 106 degradation of carbamazepine with E-spun $g-C_3N_5/MIL-101(Fe)/PANCMA$ 107 nanofibers.

Figure S4 Typical MS of photodegradation products obtained by LC-MS method.

115 Figure S5 TEM images of $g-C_3N_5/MIL-101(Fe)$ composites.

- (A)
- Figure S6 SEM images of E-spun g-C₃N₅/MIL-101(Fe)/PANCMA NFs before and 118
- 119 after consecutive 20 cycle times of photocatalytic degradation process.

towards carbamazepine pollutant.