Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Hydrothermal synthesis of Eu^{3+} -doped BaMoO₄ fluorescent probe for

selectively detecting Fe³⁺ ions

Dongmei Wang,^a Yunhao Liang,^a Zhiyi Wang,^a Shanshan Hu^{*a} and Jun Yang^{*a}

Table S1. The lattice constants of the obtained $BaMoO_4$: Eu^{3+} phosphors.

Sample	Lattice constant				
	<i>a=b</i> / Å	<i>c</i> / Å			
BaMoO ₄ : 2 mol% Eu ³⁺	5.6010	12.830			
BaMoO₄: 1.5 mol% Eu ³⁺	5.5974	12.839			
BaMoO₄: 1 mol% Eu ³⁺	5.6060	12.837			
BaMoO₄: 0.8 mol% Eu ³⁺	5.6094	12.838			
BaMoO₄: 0.5 mol% Eu ³⁺	5.5959	12.828			
JCPDS: 29-0193	5.5802	12.821			

Method	Production process	Instruments and medicines	Selectivity and Sensitivity	Response
Organic Fluorescent Probe ¹	Sophisticated	Expensive and Complex	High	Slower
Metal-Organic frameworks ²	Complicated	Simple	High	Fast
Atomic Absorption Spectrometry(AAS) ³	Cumbersome	Expensive and complex	High	Normal
BaMoO ₄ : Eu ³⁺ phosphor ^{our present work}	Simple	Cheap and simple	High	Fast

Table S2. Comparison of different methods.

1 Y. Guo, L. Wang, J. Zhuo, B. Xu, X. Li, J. Zhang, Z. Zhang, H. Chi, Y. Dong and G. Lu, A pyrene-based dual chemosensor for colorimetric detection of Cu²⁺ and fluorescent detection of Fe³⁺. *Tetrahedron Letters*, **2017**, *58* (42), 3951-3956.

2 H. Guo, N. Wu, R. Xue, H. Liu, L. Li, M. Y. Wang, W. Q. Yao, Q. Li and W. Yang, Multifunctional Ln-MOF luminescent probe displaying superior capabilities for highly selective sensing of Fe³⁺ and Al³⁺ ions and nitrotoluene. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, **2020**, *585*.

3 M.Yaman and G.Kaya, Speciation of iron (II) and (III) by using solvent extraction and flame atomic absorption spectrometry. *Analytica Chimica Acta*, **2005**, *540* (1), 77-81.

Figure S1. XPS of Ba 3d (a), Mo 3d (b), O 1s (c) and Eu 3d (d), respectively.

.

Figure S2. The excitation spectra of various concentrations of ${\rm Eu}^{3+}.$

Figure S3. Hour-to-hour photostability of BaMoO₄: Eu³⁺ phosphors after immersing in aqueous solution for several hours.

Figure S4. Emission spectra of $BaMoO_4$: Eu^{3+} suspensions after mixing with different anions.