Synthesis of atomic form nickel co-catalysts on TiO₂ for

improved photocatalysis by RAFT technique

Bo Zhang (**Corresponding author** email: mnbvcxzxh@163.com) Baohua Zhang (email: 17751739703@163.com) Guohua Wu (email: 1125412583@qq.com)

Supporting Information

1. Synthesis of Ionic Monomers

1.1 Synthesis of [META⁺][BF₄⁻]

[META⁺][BF₄⁻] was prepared according to a previously published procedure (Cao, X.; An, Z. Macromol. Rapid Commun., 2015, 36, 2107-2110). In brief, [2-(methacryloyloxy)ethyl]trimethylammonium chloride solution (8.7g, 0.072mol) and sodium tetrafluoroborate (10.9 g, 0.099 mol) were dissolved in 45 mL of water. The solution was stirred at room temperature overnight, which was then filtered and washed with cold water. The collected solid was isolated via lyophilization.

1.2 Synthesis of [META⁺][(CF₃SO₂)₂N⁻]

 $[META^+][(CF_3SO_2)_2N^-]$ was prepared according to a previously published procedure (Tokuda, M.; Minami, H.; Mizuta, Y.; Yamagami, T. Macromol. Rapid Commun., 2012, 33, 1130-1134). [2-(Methacryloyloxy)ethyl]trimethylammonium chloride solution (20.2 g, 78.0 mmol) and lithium bis(trifluoromethanesulfonyl)imide (23.3 g, 81.1 mmol) were mixed and stirred for 1.5h. Then the oily lower layer was collected and washed with cold water and lyophilized for 3 days to get [2-(methacryloyloxy)ethyl]trimethylammonium bis(trifluoromethanesulfonyl)imide $([META^+][(CF_3SO_2)_2N^-])$ as a viscous oil.

2. RAFT Dispersion polymerization of [META⁺][PF₆⁻]

RAFT aqueous dispersion copolymerization of [META⁺][PF₆] was performed at 80°C, stirring rate of 500rpm and solids contents of 5~8% w/v using PMPS (or other based macro-CTAs). In a typical experiment, PMPS₃₁ (1.7 mg, 0.0070 mmol) was dissolved in water (3.5 mL), to which was added [META⁺][PF₆⁻] (0.066 g, 0.21 mmol). After the solution was degassed with nitrogen in an ice/water bath for 30 min, it was immersed into a preheated oil bath at 80°C. After the temperature was stabilized, a degassed V-50 solution (100 mL, containing V-50 0.38 mg) was injected via a microsyringe. The polymerization was allowed to continu for 8h under protection of nitrogen. The final conversion of [META⁺][PF₆⁻] was ~80% as indicated by ¹H NMR analysis. The mean degree of polymerization of each block was calculated vased on the monomer conversion and thus the obtained polymer was denoted as PMPS₃₁-MPS-P([META⁺][PF₆⁻]). Dynamic light scattering (DLS) analysis: D_h=39 nm, PDI=0.14.

macro-CTA	solids ^a	marra CTA MALSO ^b	conv. c	DD d	weight fraction of		TEM
	(w/v)	macro-CTA/M/V-50	(%)	DP	$P([META^+][PF_6])^e$ (%)	$D_{\rm h}({\rm PDI})$	morphology ^g
PMPS ₃₁	3%	1:40:0.7	75	30	37.64	62(0.21)	spheres+worms
		1:50:0.7	72	36	42.01 122(0.1		worms
		1:60:0.7	75	45	47.52	997(0.87)	worms
		1:70:0.7	76	53	51.61	1554(0.58)	networks
	5%	1:30:0.2	80	24	32.57 39(0.14)		spheres
		1:40:0.2	82	33	39.91	39.91 41(0.11)	
		1:45:0.2	100	45	47.52	79(0.39)	spheres+short
							worms
		1:55:0.2	85	47	48.61 66(0.13)		worms
		1:60:0.2	83	50	50.15	123(0.15)	worms
		1:70:0.2	84	59	54.28	4026(0.26)	networks
		1:80:0.2	87	70	58.48	3127(0.23)	networks
		1:90:0.2	88	79	61.39	3643(0.20)	networks
		1:100:0.2	92	92	64.93 3020(0.2		networks
		1:130:0.2	90	117	70.19	3678(0.31)	networks
	8%	1:30:0.2	99	30	37.64	67(0.14)	spheres
		1:40:0.2	85	34	40.62	302(0.35)	spheres+worms
		1:50:0.2	88	44	46.96	70(0.36)	spheres+worms
		1:60:0.2	94	56	52.98	518(0.27)	networks
PMPS ₂₂	5%	1:40:0.2	88	35	49.64	55(0.13)	spheres
		1:60:0.2	87	52	59.42	270(0.25)	worms
		1:80:0.2	93	74	67.58	2071(0.33)	networks

Table S1. Summary of RAFT Aqueous Dispersion Polymerization of [META⁺][PF₆]Using PMPS Macro-CTAs at 80°C.

^aSolids= $(W_M+W_{macro-CTA})/V_{water}$. ^bMolar ratio of macro-CTA/monomer/V-50. ^cMonomer conversion determined by ¹H NMR in d₆-acetone. ^dActual degree of polymerization of [META⁺][PF₆⁻]. ^eWeight fraction of P([META⁺][PF₆⁻])=W(P([META⁺][PF₆⁻]))/W(PMPS-MPS-P([META⁺][PF₆⁻])). ^fHydrodynamic diameter (D_h) and polydispersity (PDI) of nano-objects determined by dynamic light scattering (DLS). ^gNano-object morphology identified by transmission electron microscopy (TEM).

Figure S1. Additional TEM micrographs for samples withdrawn during RAFT aqueous polymerization of $[META^+][PF_6^-]$ using PMPS₃₁ at 5% w/v solids and 80°C with $[PMPS_{31}]/[monomer]/[V-50]$ being 1:100:0.1.

Figure S2. TEM micrographs for RAFT aqueous polymerization of $[META^+][PF_6^-]$ using PMPS₃₁ at 8% w/v solids and 80°C targeting different DPs.

Figure S3. TEM micrographs for RAFT aqueous polymerization of $[META^+][PF_6^-]$ using PMPS₃₁ at 2% w/v solids and 80°C with indicated DPs.

Figure S4. TEM micrographs for RAFT aqueous polymerization of $[META^+][PF_6^-]$ using PMPS₂₂ at 5% w/v solids and 80°C with indicated DPs.

macro-CTA	monomer	solids	solvent	core block	morphology	reference citation
				weight		
				fraction		
Question X ^M	-	10%	EtOH	61%	spheres	Boyer et al. ACS Macro Lett. 2015, 4, 984–990
				66%	sphere+ worms	
~ ^s ↓ ^s ↓ → ^{CN} _{c∞H}	faril	15%	EtOH	80%	spheres	An et al. ACS Macro Lett.2014,3,1220–1224
, « , « , « , «				85%	sphere+vesicles	
	×°~~~	10%	EtOH	57%	spheres	Armes et al. Macromolecules 20 12, 45, 50 91–5098
				68%	spheres+worms	
		13%		52%	spheres	
				68%	spheres+worms	
tt.	<i>С</i>	15%	MeOH	83%	spheres	Lu et al. Polymer Chemistry, 2016, 7(29):
но-				84%	spheres+worms	4761-4770
t to	⇒	10%	H ₂ O	83%	spheres	Armes et al. J. Am. Chem. Soc. 2011, 133,
но	но-			84%	spheres+worms	16581–16587
X~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- - 	15%	H ₂ O	80%	spheres	Lewis et al.J. Am. Chem. Soc. 2011, 133, 15707– 15713
0~	но-₹			83%	spheres+worms	

Table S2. Summary and Analysis of Some RAFT Dispersion Polymerization Formulations in Literature

3. Results and discussion

Figure S5. the energy dispersive X-ray spectrum mapping(EDS) of Ni-a/TiO₂

Figure S6. The molecular models of the adsorption of hydrogen on the surface of (A) bare TiO₂, (B) TiO₂ with Ov and (C) Ni-a/TiO₂ with Ov, respectively.

The HER reaction under standard condition includes 2 parts:

$$H^{+} + e^{-} + * \rightarrow H^{*}$$
 (1)
 $H^{*} \rightarrow * + \frac{1}{2}H_{2}$ (2)

Where * and H* represent adsorption sites and hydrogen adsorbed on the surface. The whole process can be described as follows:

$$H^+ + e^- \rightarrow \frac{1}{2}H_2 \tag{3}$$

Since the total energy of $H^+ + e^-$ and $\frac{1}{2}H_2$ are equal, the Gibbs free energy of equation (3) is 0 eV. Therefore the Gibbs free energy of the adsorption of hydrogen (ΔG_{H^*}) on the surface of catalyst (equation (1)) is a key descriptor of HER activity. The closer ΔG_{H^*} is to 0, the higher HER activity the catalyst has^[8]. In our calculations, ΔG_{H^*} is calculated by the following equation:

$$\Delta G_{H^*} = \Delta E_{H^*} + \Delta E_{ZPE} - T \Delta S \tag{4}$$

where ΔE_{H^*} , ΔE_{ZPE} , T and ΔS are the adsorption energy of hydrogen, the difference in zero-point energy, the temperature and the difference in entropy, respectively^[9].