Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

For

Selective C₃ Nitrosation of Imidazopyridines using AgNO₃ as the NO source

Vishal Suresh Kudale, ^a Ching-Piao Chu^a and Jeh-Jeng Wang^{* ab}

^{*a*} Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shiquan 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan.

^b Department of Medical Research, Kaohsiung Medical University Hospital, No. 100 Tzyou 1st Rd, Sanmin District, Kaohsiung City 807, Taiwan.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

Table of Contents

1) General Information	S3
2) Mechanistic studies	S3
2) Experimental Procedures	S4- S5
3) Spectral Characterization	S6-S16
4) References	S17-S17
5) Copies of ¹ H & ¹³ C	S18-S43
6) X-Ray crystallographic data	S44-S50

(1) General Information

¹H, ¹³C, and DEPT NMR spectra were recorded on a 400 MHz Varian Unity Plus or Varian Mercury plus spectrometer. The chemical shift (δ) values are reported in parts per million (ppm), and the coupling constants (J) are given in Hz. The spectra were recorded using CDCl₃ as a solvent. ¹ H NMR chemical shifts are referenced to tetramethylsilane (TMS) (0 ppm). ¹³C NMR was referenced to CDCl₃ (77.0 ppm) or DMSO-d₆ (39.51 ppm). The abbreviations used are as follows: s, singlet; d, doublet; t, triplet; q, quartet; dd, doublet of doublet; dtd, doublet of doublet; dtd, doublet of triplets; td, triplet of doublet; m, multiplet. Mass spectra and high-resolution mass spectra (HRMS) were measured using the ESI (FT-MS solariX) at National Sun Yat-Sen University, Kaohsiung, Taiwan. Melting points were determined on an EZ-Melt (Automated melting point apparatus). All products reported showed ¹H NMR spectra in agreement with the assigned structures. Reaction progress and product mixtures were routinely monitored by TLC using Merck TLC aluminum sheets (silica gel 60 F254). Column chromatography was carried out with 230–400 mesh silica gel 60 (Merck) and a mixture of hexane/ethyl acetate or hexane as eluent. Preparative TLC was run on Merck TLC aluminum sheets (silica gel 60 F254).

(2) Mechanistic studies:

Fig S1: LC-MS observed trapping intermediate of 1, 4-Cyclohexadiene (1, 4-CHD) in the presence of starting material (1a).

(i) The General Experimental Procedure for the Synthesis of 3-nitroso-2-phenylimidazo [1, 2-*a*] pyridine derivatives using AgNO₃ as the "NO" Source.

To an oven-dried sealed tube was charged with 2-phenylimidazo[1, 2-*a*]pyridine derivatives **1a-1z**¹ (0.2 mmol), AgNO₃ (2.0 equiv), $K_2S_2O_8$ (2.0 equiv) and 1, 2-Dichloroethane (1.0 mL) allowed to stir at 80 °C until the completion of the reaction (7 ~ 9 h) by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 20 mL of water. The water layer was extracted with (3X10 mL) of ethyl acetate, and the combined ethyl acetate layer was given brine wash (1X20 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford pure heteroaryl nitrosation **2a-2z** in 65-90% yields.

(ii) The General Experimental Procedure for the Gram Scale Synthesis of 3-nitroso-2-phenylimidazo[1, 2-*a*] pyridine derivatives using AgNO₃ as the "NO" Source.

To an oven-dried sealed tube was charged with 2-phenylimidazo[1, 2-*a*]pyridine derivatives **1a** (5.15 mmol), AgNO₃ (2.0 equiv), $K_2S_2O_8$ (2.0 equiv) and 1, 2-Dichloroethane (8.0 mL) allowed to stir at 80 °C until the completion of the reaction (9 h) by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 30 mL of water. The water layer was extracted with (3X20 mL) of ethyl acetate, and the combined ethyl acetate layer was given brine wash (1X30 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford pure heteroaryl nitrosation **2a** in 56% yields.

(iii)The General Experimental Procedure Sequential one-spot strategy for the synthesis of 3-nitroso-2phenylimidazo[1, 2-*a*] pyridine derivatives using AgNO₃ as the ''NO'' Source.

To an oven-dried sealed tube was charged with 2-aminopyridine derivatives **3** (0.2 mmol), 2bromoacetophenone derivatives **4** (0.2 mmol), NaHCO₃ (2.0 equiv), and 1, 2-Dichloroethane (8.0 mL) allowed to stir at 80 °C for 2 h. Followed by the addition of AgNO₃ (2.0 equiv), $K_2S_2O_8$ (2.0 equiv), and allowed to stir at 80 °C until the completion of the reaction (5-10 h) by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 20 mL of water. The water layer was extracted with (3X10 mL) of ethyl acetate, and the combined ethyl acetate layer was given brine wash (1X20 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford pure heteroaryl nitrosation **2a**, **2c**, **2g**, **2l**, **2n**, **2q**, **2r** in 64-84% yields.

(iv)The General Experimental Procedure for the One-pot strategy for the synthesis of 3-nitroso-2phenylimidazo [1, 2-*a*] pyridine derivatives using AgNO₃ as the "NO" Source.

To an oven-dried sealed tube was charged with 2-aminopyridine derivatives **3** (0.2 mmol), 2bromoacetophenone derivatives **4** (0.2 mmol), AgNO₃ (2.0 equiv), NaHCO₃ (2.0 equiv), K₂S₂O₈ (2.0 equiv) and 1, 2-Dichloroethane (8.0 mL) allowed to stir at 80 °C until the completion of the reaction (5-9 h) by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 20 mL of water. The water layer was extracted with (3X10 mL) of ethyl acetate, and the combined ethyl acetate layer was given brine wash (1X20 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford pure heteroaryl nitrosation **2a**, **2c**, **2g**, **2q** 46-59% yields.

^{*a*} Reaction conditions: **3** (0.2 mmol), **4** (0.2 mmol), AgNO₃ (2.0 equiv), NaHCO₃ (2.0 equiv), K₂S₂O₈ (2.0 equiv), 1,2-Dichloroethane (1.0 mL), 80 °C, 5-9 h. ^{*b*} Isolated yield.

(4) Spectral Characterization

3-nitroso-2-phenylimidazo[1, 2-*a***]pyridine (2a)**²: Following the general procedure, a 15 mL reaction tube was charged with 2-phenylimidazo[1, 2-*a*]pyridine (1a) (38 mg, 0.2 mmol), AgNO₃ (0.4 mmol), K₂S₂O₈ (0.4 mmol) and 1, 2-Dichloroethane (1.0 mL) allowed to stir at 80 °C until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3X10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate

of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford the corresponding 3-nitroso-2-phenylimidazo[1, 2-*a*]pyridine (**2a**) as a green solid (40 mg, yield = 90%); Mp. 162.2-162.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.95 (dt, *J* = 6.7, 1.2 Hz, 1H), 8.70 – 8.66 (m, 2H), 7.89 – 7.82 (m, 2H), 7.61 – 7.54 (m, 3H), 7.29 – 7.25 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 153.37, 136.09, 131.58, 131.54, 130.83, 128.84, 126.50, 119.53, 117.50.

3-nitroso-2-(*m***-tolyl**)**imidazo**[1, 2-*a*]**pyridine** (2b)³ : Following the general procedure, a 15 mL reaction tube

was charged with 2-(*m*-tolyl)imidazo[1, 2-*a*]pyridine (**1b**) (42 mg, 0.2 mmol), AgNO₃ (0.4 mmol), $K_2S_2O_8$ (0.4 mmol) and 1, 2-Dichloroethane (1.0 mL) allowed to stir at 80 °C until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was

extracted with (3X10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford the corresponding 3-nitroso-2-(*m*-tolyl)imidazo[1, 2-*a*]pyridine (**2b**) as a green solid (39 mg, yield = 83%); Mp. 144.4-145.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.95 (dt, *J* = 6.7, 1.2 Hz, 1H), 8.49

(dtt, J = 3.6, 1.8, 0.7 Hz, 2H), 7.89 – 7.82 (m, 2H), 7.48 – 7.39 (m, 2H), 7.29 – 7.24 (m, 1H), 2.49 (d, J = 0.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.11, 153.25, 145.61, 138.61, 136.19, 132.54, 131.29, 131.22, 128.78, 128.19, 126.56, 119.52, 117.39, 21.44.

3-nitroso-2-(*p*-tolyl)imidazo[1, 2-*a*]pyridine (2c)⁴ : Following the general procedure, a 15 mL reaction tube

was charged with 2-(p-tolyl)imidazo[1, 2-*a*]pyridine (1c) (42 mg, 0.2 mmol), AgNO₃ (0.4 mmol), $K_2S_2O_8$ (0.4 mmol) and 1, 2-Dichloroethane (1.0 mL) allowed to stir at 80 °C until the completion of reaction by TLC. After completion, the

reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3X10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford the corresponding 3-nitroso-2-(*p*-tolyl)imidazo[1, 2-*a*]pyridine (**2c**) as a green solid (41 mg, yield = 86%); Mp. 208.0-209.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.95 (dt, *J* = 6.8, 1.2 Hz, 1H), 8.61 – 8.57 (m, 2H), 7.88 – 7.81 (m, 2H), 7.39 – 7.35 (m, 2H), 7.25 (td, *J* = 6.5, 2.0 Hz, 1H), 2.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.03, 153.19, 145.78, 142.37, 136.19, 130.78, 129.67, 128.66, 126.60, 119.33, 117.32, 21.63.

2-(4-methoxyphenyl)-3-nitrosoimidazo[1, 2-a]pyridine (2d)² : Following the general procedure, a 15 mL

reaction tube was charged with 2-(4-methoxyphenyl)imidazo[1, 2-*a*]pyridine (**1d**) (45 mg, 0.2 mmol), AgNO₃ (0.4 mmol), $K_2S_2O_8$ (0.4 mmol) and 1,2-Dichloroethane (1.0 mL) allowed to stir at 80 °C until the completion of reaction

by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3X10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford the corresponding 2-(4-methoxyphenyl)-3-nitrosoimidazo[1, 2-*a*]pyridine (**2d**) as a green solid (40 mg, yield = 80%); Mp. 220.4-221.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.97 (dt, *J* = 6.7, 1.2 Hz, 1H), 8.71 – 8.65 (m, 2H), 7.84 – 7.80 (m, 2H), 7.22 (ddd, *J* = 6.7, 4.8, 3.5 Hz, 1H), 7.09 – 7.04 (m, 2H), 3.92 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.94, 159.79, 153.02, 146.10, 136.36, 132.65, 126.77, 124.08, 119.07, 117.18, 114.46, 55.48.

2-(2-methoxyphenyl)-3-nitrosoimidazo[1, 2-a]pyridine (2e)² : Following the general procedure, a 15 mL

reaction tube was charged with 2-(2-methoxyphenyl)imidazo[1, 2-*a*]pyridine (**1e**) (45 mg, 0.2 mmol), AgNO₃ (0.4 mmol), $K_2S_2O_8$ (0.4 mmol) and 1, 2-Dichloroethane (1.0 mL) allowed to stir at 80 °C until the completion of reaction by TLC. After completion,

the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3X10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford the corresponding 2-(2-methoxyphenyl)-3-nitrosoimidazo[1, 2-*a*]pyridine (**2e**) as a green solid (38 mg, yield = 76%); Mp. 110.8-111.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.89 (dt, *J* = 6.7, 1.2 Hz, 1H), 7.95 – 7.90 (m, 2H), 7.83 (ddd, *J* = 8.7, 7.1, 1.4 Hz, 1H), 7.54 (ddd, *J* = 8.3, 7.5, 1.8 Hz, 1H), 7.29 (dd, *J* = 6.9, 1.3 Hz, 1H), 7.17 – 7.11 (m, 2H), 3.89 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.61, 135.45, 133.84, 132.17, 126.14, 120.75, 120.69, 119.39, 117.73, 111.82, 56.05.

2-(2-chlorophenyl)-3-nitrosoimidazo[1, 2-a]pyridine (2f)² : Following the general procedure, a 15 mL

reaction tube was charged with 2-(2-chlorophenyl)imidazo[1, 2-*a*]pyridine (**1f**) (46 mg, 0.2 mmol), AgNO₃ (0.4 mmol), $K_2S_2O_8$ (0.4mmol) and 1, 2-Dichloroethane (1.0 mL) allowed to stir at 80 °C until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The

water layer was extracted with (3X10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford the corresponding 2-(2-chlorophenyl)-3-nitrosoimidazo[1, 2*a*]pyridine (**2f**) as a green solid (37 mg, yield = 72%); Mp. 146.2-146.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.86 (dt, *J* = 6.6, 1.2 Hz, 1H), 7.98 – 7.85 (m, 3H), 7.62 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.49 (dtd, *J* = 19.4, 7.5, 1.6 Hz, 2H), 7.35 (td, *J* = 6.9, 1.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 160.94, 153.34, 145.07, 135.64, 134.25, 133.78, 131.40, 130.76, 130.58, 126.66, 126.13, 119.95, 117.92.

2-(4-chlorophenyl)-3-nitrosoimidazo[1, 2-a]pyridine $(2g)^2$: Following the general procedure, a 15 mL

reaction tube was charged with 2-(4-chlorophenyl)imidazo[1, 2-*a*]pyridine (**1g**) (46 mg, 0.2 mmol), AgNO₃ (0.4 mmol), K₂S₂O₈ (0.4 mmol) and 1, 2-Dichloroethane (1.0 mL) allowed to stir at 80 °C until the completion of reaction by TLC. After

completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3X10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford the corresponding 2-(4-chlorophenyl)-3-nitrosoimidazo[1, 2-*a*]pyridine (**2g**) as a green solid (35 mg, yield = 68%); Mp. 219.8-220.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.92 (dt, *J* = 6.6, 1.2 Hz, 1H), 8.69 – 8.63 (m, 2H), 7.86 (dd, *J* = 3.7, 1.0 Hz, 2H), 7.58 – 7.48 (m, 2H), 7.31 – 7.26 (m, 1H);

¹³C NMR (101 MHz, CDCl₃) δ 158.56, 153.17, 145.59, 138.30, 136.26, 131.96, 129.97, 129.17, 126.52, 119.75, 117.50.

2-(2-bromophenyl)-3-nitrosoimidazo[1, 2-a]pyridine (2h)² : Following the general procedure, a 15 mL

reaction tube was charged with 2-(2-bromophenyl)imidazo[1, 2-*a*]pyridine (**1h**) (55 mg, 0.2 mmol), AgNO₃ (0.4 mmol), $K_2S_2O_8$ (0.4 mmol) and 1, 2-Dichloroethane (1.0 mL) allowed to stir at 80 °C until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The

water layer was extracted with (3X10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford the corresponding 2-(2-bromophenyl)-3-nitrosoimidazo[1, 2*a*]pyridine (**2h**) as a green solid (38 mg, yield = 63%); Mp. 118.6-119.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.84 (dt, *J* = 6.8, 1.2 Hz, 1H), 8.01 – 7.77 (m, 4H), 7.53 – 7.33 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.18, 153.17, 144.94, 135.63, 133.72, 133.66, 132.79, 131.45, 127.16, 126.11, 123.35, 119.96, 117.91.

2-(4-bromophenyl)-3-nitrosoimidazo[1, 2-a]pyridine (2i)³ : Following the general procedure, a 15 mL

reaction tube was charged with 2-(4-bromophenyl)imidazo[1, 2-*a*]pyridine (**1i**) (55 mg, 0.2 mmol), AgNO₃ (0.4 mmol), K₂S₂O₈ (0.4 mmol) and 1,2-Dichloroethane (1.0 mL) allowed to stir at 80 °C until the completion of reaction by TLC. After

completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3X10 mL) of ethyl acetate, and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford the corresponding 2-(4-bromophenyl)-3-nitrosoimidazo[1, 2-*a*]pyridine (**2i**) as a green solid (50 mg, yield = 83%); Mp. 199.3-199.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.92 (d, *J* = 6.3 Hz, 1H), 8.61 – 8.56 (m, 2H), 7.86 (d, *J* = 2.9 Hz, 2H), 7.72 – 7.68 (m, 2H), 7.28 (d, *J* = 7.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 145.61, 136.23, 132.14, 130.46, 126.96, 126.55, 119.78, 117.54.

2-(4-fluorophenyl)-3-nitrosoimidazo[1, 2-*a*]pyridine $(2j)^2$: Following the general procedure, a 15 mL reaction tube was charged with 2-(4-fluorophenyl)imidazo[1, 2-*a*]pyridine (1j) (42 mg, 0.2 mmol), AgNO₃ (0.4 mmol), K₂S₂O₈ (0.4 mmol) and 1,2-Dichloroethane (1.0 mL) allowed to stir at 80 °C until the completion of reaction by TLC. After

completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3X10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced

pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford the corresponding 2-(4-fluorophenyl)-3-nitrosoimidazo[1, 2-*a*]pyridine (**2j**) as a green solid (31 mg, yield = 65%); Mp. 120-121 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.93 (dt, *J* = 6.7, 1.2 Hz, 1H), 8.80 – 8.66 (m, 2H), 7.90 – 7.84 (m, 2H), 7.32 – 7.22 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.65, 164.40 (*J_F* = 252 Hz), 158.76, 153.05, 145.64, 136.37, 133.06, 132.97 (*J_F* = 8.7 Hz), 127.66 (*J_F* = 3.1 Hz), 126.61, 119.66, 117.42, 116.22 (d, *J_F* = 21.4 Hz), 116.01.

2-(4-iodophenyl)-3-nitrosoimidazo[1, 2-a]pyridine (2k) : Following the general procedure, a 15 mL

reaction tube was charged with 2-(4-iodophenyl)imidazo[1, 2-*a*]pyridine (**1k**) (64 mg, 0.2 mmol), AgNO₃ (0.4 mmol), $K_2S_2O_8$ (0.4 mmol) and 1, 2-Dichloroethane (1.0 mL) allowed to stir at 80 °C until the completion of reaction by TLC. After

completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3X10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford the corresponding 2-(4-iodophenyl)-3-nitrosoimidazo[1, 2-*a*]pyridine (**2k**) as a green solid (57 mg, yield = 82%); Mp. 194.8-195.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.90 (dt, *J* = 6.7, 1.2 Hz, 1H), 8.47 – 8.35 (m, 2H), 7.92 – 7.82 (m, 4H), 7.31 – 7.25 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 158.68, 153.07, 145.51, 138.11, 136.28, 132.12, 130.89, 126.52, 119.80, 117.50, 99.52. HRMS (ESI) calcd for C₁₃H₉N₃O₁ [M + H] ⁺: 349.9790; found: 349.9792.

3-nitroso-2-(4-(trifluoromethyl)phenyl)imidazo[1, 2-*a***]pyridine (2l)**³ : Following the general procedure, a

15 mL reaction tube was charged with 2-(4-(trifluoromethyl)phenyl)imidazo[1, 2-a]pyridine (**1**l) (52 mg, 0.2 mmol), AgNO₃ (0.4 mmol), K₂S₂O₈ (0.4 mmol) and 1, 2-Dichloroethane (1.0 mL) allowed to stir at 80 °C until the completion of

reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3X10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford the corresponding 3-nitroso-2-(4-(trifluoromethyl)phenyl)imidazo[1, 2-*a*]pyridine (**2l**) as a green solid (39 mg, yield = 68%); Mp. 163.7-164.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.91 (dt, *J* = 6.7, 1.2 Hz, 1H), 8.82 (dt, *J* = 7.9, 0.9 Hz, 2H), 7.92 – 7.79 (m, 4H), 7.32 (td, *J* = 6.6, 2.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 158.01, 153.36, 145.41, 136.23, 134.82, 131.00 (*q*, *J*_{CF3}= 32.4 Hz), 126.43, 125.72 (q, *J*_{CF3}= 3.7 Hz), 125.69, 125.65, 125.61, 120.15 (q, *J*_{CF3}= 242.2 Hz), 117.73.

2-(3,4-dichlorophenyl)-3-nitrosoimidazo[1, 2-a]pyridine (2m)³: Following the general procedure, a 15 mL

reaction tube was charged with 2-(3,4-dichlorophenyl)imidazo[1, 2-*a*]pyridine (**1m**) (53 mg, 0.2 mmol), AgNO₃ (0.4 mmol), $K_2S_2O_8$ (0.4mmol) and 1, 2-Dichloroethane (1.0 mL) allowed to stir at 80 °C until the completion of reaction

by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3X10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford the corresponding 2-(3,4-dichlorophenyl)-3-nitrosoimidazo[1, 2-*a*]pyridine (**2m**) as a green solid (44 mg, yield = 75%); Mp. 194.7-195.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.89 (dt, *J* = 6.8, 1.2 Hz, 1H), 8.82 (d, *J* = 2.0 Hz, 1H), 8.58 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.88 – 7.85 (m, 2H), 7.63 (d, *J* = 8.5 Hz, 1H), 7.30 (dt, *J* = 6.7, 4.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 153.11, 145.41, 136.30, 136.23, 133.36, 132.10, 131.43, 130.87, 129.73, 126.45, 120.05, 117.62.

2-(naphthalen-2-yl)-3-nitrosoimidazo[1, 2-a]pyridine (2n)⁴ : Following the general procedure, a 15 mL

reaction tube was charged with 2-(naphthalen-2-yl)imidazo[1, 2-*a*]pyridine (**1n**) (38 mg, 0.2 mmol), AgNO₃ (0.4 mmol), $K_2S_2O_8$ (0.4 mmol) and 1, 2-Dichloroethane (1.0 mL) allowed to stir at 80 °C until the completion of reaction

by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3X10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford the corresponding 2-(naphthalen-2-yl)-3-nitrosoimidazo[1, 2-*a*]pyridine (**2n**) as a green solid (41 mg, yield = 76%); Mp. 206.2-206.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.97 (d, *J* = 5.9 Hz, 1H), 9.33 – 9.29 (m, 1H), 8.76 (dd, *J* = 8.7, 1.6 Hz, 1H), 8.06 – 7.99 (m, 2H), 7.94 – 7.85 (m, 3H), 7.57 (dddd, *J* = 16.6, 8.1, 6.8, 1.3 Hz, 2H), 7.26 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 159.82, 145.83, 136.18, 134.86, 133.27, 132.16, 129.55, 128.92, 128.47, 127.91, 127.74, 126.60, 126.59, 126.57, 119.52, 117.47.

2-(furan-2-yl)-3-nitrosoimidazo[1, 2-a]pyridine (20)² : Following the general procedure, a 15 mL reaction

tube was charged with 2-(furan-2-yl)imidazo[1, 2-*a*]pyridine (**1o**) (37 mg, 0.2 mmol), AgNO₃ (0.4 mmol), $K_2S_2O_8$ (0.4 mmol) and 1, 2-Dichloroethane (1.0 mL) allowed to stir at 80 °C until the completion of reaction by TLC. After completion, the reaction mixture

was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3X10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude

compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford the corresponding 2-(furan-2-yl)-3-nitrosoimidazo[1, 2-*a*]pyridine (**2o**) as a green solid (36 mg, yield = 85%); Mp. 193.8-194.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.87 (dt, *J* = 6.7, 1.2 Hz, 1H), 7.88 – 7.81 (m, 4H), 7.29 – 7.23 (m, 1H), 6.70 (dd, *J* = 3.5, 1.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 151.11, 147.16, 146.55, 146.46, 136.43, 126.46, 119.45, 118.87, 117.52, 113.34.

3-nitroso-2-(thiophen-2-yl)imidazo[1, 2-a]pyridine (2p)² : Following the general procedure, a 15 mL

reaction tube was charged with 2-(thiophen-2-yl)imidazo[1, 2-*a*]pyridine (**1p**) (40 mg, 0.2 mmol), AgNO₃ (0.4 mmol), K₂S₂O₈ (0.4 mmol) and 1, 2-Dichloroethane (1.0 mL) allowed to stir at 80 °C until the completion of reaction by TLC. After completion, the

reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3X10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford the corresponding 3-nitroso-2-(thiophen-2-yl)imidazo[1, 2-*a*]pyridine (**2p**) as a green solid (37 mg, yield = 81%); Mp. 190.8-191.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.88 (dt, *J* = 6.7, 1.2 Hz, 1H), 8.49 (dd, *J* = 3.8, 1.2 Hz, 1H), 7.85 – 7.78 (m, 2H), 7.74 (dd, *J* = 5.0, 1.1 Hz, 1H), 7.29 – 7.21 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 155.71, 146.34, 136.51, 134.15, 133.35, 133.03, 129.10, 126.61, 119.20, 117.16.

8-methyl-3-nitroso-2-phenylimidazo[1, 2-a]pyridine (2q)⁴ : Following the general procedure, a 15 mL

reaction tube was charged with 8-methyl-2-phenylimidazo[1, 2-*a*]pyridine (**1q**) (42 mg, 0.2 mmol), AgNO₃ (0.4 mmol), K₂S₂O₈ (0.4 mmol) and 1,2-Dichloroethane (1.0 mL) allowed to stir at 80 °C until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3X10 mL) of ethyl acetate and the combined ethyl

acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford the corresponding 8-methyl-3-nitroso-2-phenylimidazo[1, 2-*a*]pyridine (**2q**) as a green solid (37 mg, yield = 78%); Mp. 131.4-131.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.81 (d, *J* = 6.8 Hz, 1H), 8.73 – 8.65 (m, 2H), 7.63 (dt, *J* = 7.2, 1.2 Hz, 1H), 7.58 – 7.52 (m, 3H), 7.15 (t, *J* = 7.0 Hz, 1H), 2.76 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.37, 153.76, 145.58, 135.42, 131.84, 131.33, 130.83, 128.74, 127.92, 124.24, 119.42, 16.51.

6-chloro-3-nitroso-2-phenylimidazo[1, 2-a]pyridine (2r)² : Following the general procedure, a 15 mL

reaction tube was charged with 6-chloro-2-phenylimidazo[1, 2-*a*]pyridine (**1r**) (46 mg, 0.2 mmol), AgNO₃ (0.4 mmol), K₂S₂O₈ (0.4 mmol) and 1, 2-Dichloroethane (1.0 mL) allowed to stir at 80 °C until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with

10 mL of water. The water layer was extracted with (3X10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford the corresponding 6-chloro-3-nitroso-2-phenylimidazo[1, 2-*a*]pyridine (**2r**) as a green solid (41 mg, yield = 80%); Mp. 213.2-214.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.02 (t, *J* = 1.4 Hz, 1H), 8.69 – 8.64 (m, 2H), 7.80 (d, *J* = 1.4 Hz, 2H), 7.63 – 7.54 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.81, 153.13, 143.78, 136.64, 131.82, 131.25, 130.81, 128.94, 127.45, 124.42, 117.76.

6-bromo-3-nitroso-2-phenylimidazo[1, 2-a]pyridine (2s)³ : Following the general procedure, a 15 mL

reaction tube was charged with 6-bromo-2-phenylimidazo[1, 2-*a*]pyridine (**1s**) (55 mg, 0.2 mmol), AgNO₃ (0.4 mmol), K₂S₂O₈ (0.4 mmol) and 1, 2-Dichloroethane (1.0 mL) allowed to stir at 80 °C until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with

10 mL of water. The water layer was extracted with (3X10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford the corresponding 6-bromo-3-nitroso-2-phenylimidazo[1, 2-*a*]pyridine (**2s**) as a green solid (47 mg, yield = 78%); Mp. 217.3-218.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.10 (dd, *J* = 1.9, 0.8 Hz, 1H), 8.68 – 8.65 (m, 2H), 7.90 (dd, *J* = 9.2, 2.0 Hz, 1H), 7.74 (dd, *J* = 9.3, 0.8 Hz, 1H), 7.63 – 7.54 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.62, 152.95, 143.93, 138.96, 131.82, 131.22, 130.82, 128.94, 126.42, 118.05, 113.88, 77.32, 77.00, 76.68.

8-bromo-6-methyl-3-nitroso-2-phenylimidazo[1, 2-a]pyridine (2t)² : Following the general procedure, a 15

mL reaction tube was charged with 8-bromo-6-methyl-2-phenylimidazo[1, 2-a]pyridine (**1t**) (57 mg, 0.2 mmol), AgNO₃ (0.4 mmol), K₂S₂O₈ (0.4 mmol) and 1,2-Dichloroethane (1.0 mL) allowed to stir at 80 °C until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and

diluted with 10 mL of water. The water layer was extracted with (3X10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was

purified using column chromatography by eluting from (Hex/EA = 8/2) to afford the corresponding 8-bromo-6-methyl-3-nitroso-2-phenylimidazo[1, 2-*a*]pyridine (**2t**) as a green solid (48 mg, yield = 76%); Mp. 168.2-169.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.13 (s, 1H), 9.06 – 9.04 (m, 2H), 8.29 (s, 1H), 7.94 (dd, *J* = 8.0, 6.8 Hz, 3H), 2.80 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.98, 140.71, 131.75, 131.33, 131.01, 130.74, 128.83, 111.71, 18.16.

3-nitroso-2,6-diphenylimidazo[1, 2-a]pyridine (2u) : Following the general procedure, a 15 mL reaction

tube was charged with 2,6-diphenylimidazo[1, 2-*a*]pyridine (**1u**) (54 mg, 0.2 mmol), AgNO₃ (0.4 mmol), K₂S₂O₈ (0.4 mmol) and 1, 2-Dichloroethane (1.0 mL) allowed to stir at 80 °C until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted

with 10 mL of water. The water layer was extracted with (3X10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford the corresponding 3-nitroso-2, 6-diphenylimidazo[1, 2-*a*]pyridine (**2u**) as a green solid (48 mg, yield = 81%); Mp. 171.6-172.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.21 (dd, *J* = 1.9, 0.9 Hz, 1H), 8.71 – 8.68 (m, 2H), 8.09 (dd, *J* = 9.1, 1.9 Hz, 1H), 7.93 (dd, *J* = 9.1, 0.9 Hz, 1H), 7.63 – 7.45 (m, 8H); ¹³C NMR (101 MHz, CDCl₃) δ 135.99, 134.48, 131.68, 131.43, 130.84, 129.43, 129.03, 128.89, 127.15, 123.91, 117.19. HRMS (ESI) calcd for C₁₉ H₁₄N₃O [M + H] ⁺: 300.1137; found: 300.1138.

3-nitroso-2-phenyl-6-(p-tolyl)imidazo[1, 2-a]pyridine (2v) : Following the general procedure, a 15 mL

reaction tube was charged 2-phenyl-6-(p-tolyl)imidazo[1, 2-*a*]pyridine (**1v**) (57 mg, 0.2 mmol), AgNO₃ (0.4 mmol), $K_2S_2O_8$ (0.4 mmol) and 1, 2-Dichloroethane (1.0 mL) allowed to stir at 80 °C until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room

temperature and diluted with 10 mL of water. The water layer was extracted with (3X10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford the corresponding 3nitroso-2-phenyl-6-(*p*-tolyl)imidazo[1, 2-*a*]pyridine (**2v**) as a green solid (49 mg, yield = 79%); Mp. 221.5-222.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.21 (s, 1H), 8.71 (d, *J* = 7.3 Hz, 2H), 8.12 – 8.08 (m, 1H), 7.95 (d, *J* = 9.0 Hz, 1H), 7.64 – 7.48 (m, 6H), 7.37 – 7.33 (m, 2H), 2.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 139.27, 136.09, 134.65, 132.38, 131.76, 130.85, 130.16, 128.93, 126.98, 123.77, 117.05, 21.21. HRMS (ESI) calcd for C₂₀H₁₆N₃O [M + H] ⁺: 314.1293; found: 314.1296 8-methyl-3-nitroso-2-(*p*-tolyl)imidazo[1, 2-*a*]pyridine (2w)³ : Following the general procedure, a 15 mL

reaction tube was charged with 8-methyl-2-(p-tolyl)imidazo[1, 2-*a*]pyridine (**1w**) (44 mg, 0.2 mmol), AgNO₃ (0.4 mmol), K₂S₂O₈ (0.4 mmol) and 1, 2-Dichloroethane (1.0 mL) allowed to stir at 80 °C until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with

10 mL of water. The water layer was extracted with (3X10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford the corresponding 8-methyl-3-nitroso-2-(p-tolyl)imidazo[1, 2-*a*]pyridine (**2w**) as a green solid (35 mg, yield = 69%); Mp. 169.2-170.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.83 (d, *J* = 6.4 Hz, 1H), 8.63 – 8.57 (m, 2H), 7.65 (d, *J* = 7.1 Hz, 1H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.15 (t, *J* = 6.9 Hz, 1H), 2.76 (s, 3H), 2.46 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.71, 145.99, 142.15, 135.79, 130.82, 129.61, 128.99, 127.87, 124.67, 119.30, 21.65, 16.55.

6-chloro-3-nitroso-2-(p-tolyl)imidazo[1, 2-a]pyridine (2x)² : Following the general procedure, a 15 mL

reaction tube was charged with 6-chloro-2-(*p*-tolyl)imidazo[1, 2-*a*]pyridine (**1x**) (49 mg, 0.2 mmol), AgNO₃ (0.4 mmol), $K_2S_2O_8$ (0.4 mmol) and 1, 2-Dichloroethane (1.0 mL) allowed to stir at 80 °C until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room

temperature and diluted with 10 mL of water. The water layer was extracted with (3X10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford the corresponding 6-chloro-3-nitroso-2-(*p*-tolyl)imidazo[1,2-*a*]pyridine (**2x**) as a green solid (43 mg, yield = 79%); Mp. 228.0-229.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.99 (t, *J* = 1.5 Hz, 1H), 8.57 – 8.53 (m, 2H), 7.76 (d, *J* = 1.5 Hz, 2H), 7.37 – 7.33 (m, 2H), 2.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.69, 152.91, 143.80, 142.65, 136.68, 130.72, 129.75, 128.33, 127.18, 124.44, 117.55, 21.64.

2-(furan-2-yl)-3-nitroso-6-phenylimidazo[1, 2-a]pyridine (2y) : Following the general procedure, a 15 mL

reaction tube was charged with 2-(furan-2-yl)-6-phenylimidazo[1, 2-*a*]pyridine (**1y**) (52 mg, 0.2 mmol), AgNO₃ (0.4 mmol), K₂S₂O₈ (0.4 mmol) and 1, 2-Dichloroethane (1.0 mL) allowed to stir at 80 °C until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature

and diluted with 10 mL of water. The water layer was extracted with (3X10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was

purified using column chromatography by eluting from (Hex/EA = 8/2) to afford the corresponding 2-(furan-2-yl)-3-nitroso-6-phenylimidazo[1, 2-*a*]pyridine (**2**y) as a green solid (47 mg, yield = 81%); Mp. 198.5-199.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.14 (dd, *J* = 1.9, 0.9 Hz, 1H), 8.06 (dd, *J* = 9.0, 1.9 Hz, 1H), 7.90 – 7.86 (m, 2H), 7.83 (dd, *J* = 3.5, 0.7 Hz, 1H), 7.61 – 7.58 (m, 2H), 7.55 – 7.45 (m, 3H), 6.70 (dd, *J* = 3.5, 1.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 151.22, 147.17, 146.66, 136.16, 135.30, 134.32, 129.43, 129.04, 127.11, 123.76, 118.84, 117.28, 113.38. HRMS (ESI) calcd for C₁₇H₁₂N₃O₂ [M + H] ⁺: 290.0930; found: 290.0933.

2-phenylimidazo[1, 2-a]pyridin-3-amine (5)²: To a stirred solution of 2a (0.1 g, 0.45 mmol) in glacial acetic

acid (2 mL) was added iron powder (0.075 g, 1.35 mmol). The resulting suspension was stirred at 100 °C for 3 h. After completion of the reaction (as determined by TLC), the reaction mixture was filtered through a bed of celite to remove the iron residue,

which was washed with ethyl acetate (30 mL). The filtrate was partitioned with 2 m KOH, and the basic layer was further extracted with ethyl acetate (3 × 25 mL). The combined organic extracts were washed with brine (35 mL), dried with anhydrous Na₂SO₄, and concentrated under reduced pressure. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 6/4) to afford the corresponding 2-phenylimidazo[1, 2-*a*]pyridin-3-amine (**3**) as a yellow solid (88 mg, yield = 86%); Mp. 119-121 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 6.8 Hz, 1H), 7.94 (d, *J* = 7.6 Hz, 2H), 7.53 (d, *J* = 9.2 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.29 (dd, *J* = 14.8, 7.2 Hz, 1H), 7.09 (d, *J* = 7.6 Hz, 1H), 6.78 (d, *J* = 6.8 Hz, 1H), 3.51 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 140.69, 134.05, 132.49, 128.67, 128.29, 127.17, 127.05, 126.90, 123.43, 122.76, 121.88, 117.04, 111.79.

(5) References:

1 (a) S. Samanta and A. Hajra, *J. Org. Chem.*, 2019, **84**, 4363-4371; (b) M. H. Shinde and U. A. Kshirsagar, *Green Chem.*, 2016, **18**, 1455-1458.

2 S. Mukhopadhyay, S. U. Dighe, S. Kolle, P. K. Shukla and S. Batra, *Eur. J. Org. Chem.*, 2016, **2016**, 3836-3844.

3 D. Yang, K. Yan, W. Wei, Y. Liu, M. Zhang, C. Zhao, L. Tian and H. Wang, *Synthesis (Stuttg).*, 2016, **48**, 122-130.

4 K. Monir, M. Ghosh, S. Jana, P. Mondal, A. Majee and A. Hajra, Org. Biomol. Chem., 2015, 13, 8717-8722.

fl (ppm) -10

II (PPH

19

fl (ppm) -10

fl (ppm) -10

fl (ppm) -10

fl (ppm) -10

fl (ppm) -10

9.944 9.932

fl (ppm) -10

fl (ppm) -10

fl (ppm) -10

fl (ppm) -10

fl (ppm) -10

fl (ppm) Ó -10

fl (ppm) -10

4.607 4.6070

35

-10 fl (ppm) Ó

fl (ppm)

fl (ppm) 210 200 -10

-10 fl (ppm)

fl (ppm) -10

fl (ppm) -10

Table 1. Crystal data and structure refinement for 2a.

Identification code	2a	
Empirical formula	C13 H9 N3 O	
Formula weight	223.23	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_1/n$	
Unit cell dimensions	a = 10.8002(6) Å	<i>α</i> = 90°.
	b = 8.8240(5) Å	β=100.264(3)°.
	c = 22.0252(13) Å	$\gamma = 90^{\circ}.$
Volume	2065.4(2) Å ³	
Z	8	
Density (calculated)	1.436 Mg/m ³	
Absorption coefficient	0.095 mm ⁻¹	
F(000)	928	
Crystal size	0.530 x 0.290 x 0.200 mm ³	
Theta range for data collection	3.041 to 26.394°.	
Index ranges	-13<=h<=13, -11<=k<=11, -27	7<=l<=27
Reflections collected	34885	
Independent reflections	4196 [R(int) = 0.0429]	
Completeness to theta = 25.242°	99.5 %	
Absorption correction	Semi-empirical from equivaler	nts
Max. and min. transmission	0.9281 and 0.8181	
Refinement method	Full-matrix least-squares on F ²	2
Data / restraints / parameters	4196 / 0 / 307	
Goodness-of-fit on F ²	1.067	
Final R indices [I>2sigma(I)]	R1 = 0.0398, wR2 = 0.1084	
R indices (all data)	R1 = 0.0533, wR2 = 0.1221	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.219 and -0.188 e.Å ⁻³	

	Х	у	Z	U(eq)
O(1)	7648(1)	4062(1)	684(1)	39(1)
N(1)	4269(1)	1023(1)	531(1)	27(1)
N(2)	5388(1)	2750(1)	90(1)	26(1)
N(3)	7117(1)	3124(2)	989(1)	32(1)
C(1)	4319(1)	1858(2)	19(1)	26(1)
C(2)	3459(2)	1900(2)	-535(1)	31(1)
C(3)	3714(2)	2825(2)	-1000(1)	35(1)
C(4)	4813(2)	3714(2)	-913(1)	34(1)
C(5)	5646(2)	3681(2)	-370(1)	31(1)
C(6)	6046(1)	2470(2)	692(1)	27(1)
C(7)	5301(1)	1382(2)	940(1)	25(1)
C(8)	5545(2)	663(2)	1553(1)	27(1)
C(9)	6746(2)	608(2)	1918(1)	32(1)
C(10)	6923(2)	-125(2)	2486(1)	39(1)
C(11)	5924(2)	-802(2)	2696(1)	41(1)
C(12)	4732(2)	-744(2)	2335(1)	40(1)
C(13)	4540(2)	-20(2)	1768(1)	33(1)
O(2)	2435(1)	3848(1)	720(1)	39(1)
N(4)	-880(1)	731(1)	627(1)	26(1)
N(5)	173(1)	2494(1)	168(1)	26(1)
N(6)	1945(1)	2901(2)	1037(1)	32(1)
C(14)	-866(1)	1560(2)	108(1)	25(1)
C(15)	-1746(2)	1562(2)	-439(1)	30(1)
C(16)	-1538(2)	2499(2)	-908(1)	34(1)
C(17)	-458(2)	3420(2)	-838(1)	35(1)
C(18)	398(2)	3417(2)	-304(1)	30(1)
C(19)	854(1)	2254(2)	767(1)	27(1)
C(20)	149(1)	1140(2)	1029(1)	24(1)
C(21)	436(1)	429(2)	1642(1)	25(1)
C(22)	1456(2)	859(2)	2093(1)	31(1)
C(23)	1680(2)	117(2)	2660(1)	35(1)
C(24)	915(2)	-1056(2)	2783(1)	32(1)
C(25)	-93(2)	-1502(2)	2336(1)	34(1)
C(26)	-331(2)	-759(2)	1773(1)	30(1)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for vsk7. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-N(3)	1.2665(17)
N(1)-C(7)	1.3388(19)
N(1)-C(1)	1.3572(19)
N(2)-C(5)	1.3725(19)
N(2)-C(1)	1.3830(19)
N(2)-C(6)	1.4093(19)
N(3)-C(6)	1.353(2)
C(1)-C(2)	1.395(2)
C(2)-C(3)	1.376(2)
C(2)-H(2A)	0.9500
C(3)-C(4)	1.407(2)
C(3)-H(3B)	0.9500
C(4)-C(5)	1.363(2)
C(4)-H(4A)	0.9500
C(5)-H(5A)	0.9500
C(6)-C(7)	1.422(2)
C(7)-C(8)	1.122(2) 1 474(2)
C(8)-C(13)	1.171(2) 1.395(2)
C(8)-C(9)	1.398(2)
C(9) - C(10)	1.390(2) 1.391(2)
C(9) - E(10)	0.9500
C(10)-C(11)	1 383(3)
C(10) - C(11)	0.9500
C(11) C(12)	1 380(3)
C(11) - C(12) C(11) - H(11A)	0.9500
C(12) C(13)	1 386(2)
C(12) + C(13)	0.9500
C(12)- $H(12A)C(13)$ $H(13A)$	0.9500
O(2)-N(6)	1.26/3(17)
N(4) - C(20)	1.20+3(17) 1 3/0/(19)
N(4) - C(20)	1.3404(17) 1 3602(10)
N(4) - C(14) N(5) C(14)	1.3002(19) 1.3705(10)
N(5) - C(14)	1.3795(19) 1 3745(10)
N(5) - C(10)	1.3743(19) 1 4086(10)
N(5) - C(19) N(6) C(19)	1.4080(19) 1.348(2)
C(14) C(15)	1.3+0(2) 1 30/(2)
C(15) C(16)	1.374(2) 1.373(2)
C(15)-E(10)	0.9500
C(16)-C(17)	1407(2)
C(16)-H(16A)	0.9500
C(17)- $C(18)$	1 362(2)
C(17)-H(17A)	0.9500
C(18)-H(18A)	0.9500
C(19)-C(20)	1 427(2)
C(20)- $C(21)$	1.427(2) 1 470(2)
C(21)-C(22)	1.470(2) 1 398(2)
C(21) - C(22) C(21) - C(26)	1.398(2) 1 308(2)
C(22)-C(23)	1.393(2)
C(22) - C(23)	0.0500
$C(22)^{-11}(22\pi)$ $C(23)^{-}C(24)$	1 381(2)
C(23)-C(27)	0.9500
C(24)-C(25)	1 389(2)
C(24)-C(23)	0.9500
(2 1) 11(2711)	0.7500

Table 3. Bond lengths [Å] and angles $[\circ]$ for vsk7.

C(25)-C(26)	1.386(2)
C(25)-H(25A)	0.9500
C(26)-H(26A)	0.9500
C(7)-N(1)-C(1)	106.18(13)
C(5)-N(2)-C(1)	122.13(13)
C(5)-N(2)-C(6)	131.72(14)
C(1)-N(2)-C(6)	106.15(12)
O(1)-N(3)-C(6)	116 86(14)
N(1)-C(1)-N(2)	11172(13)
N(1)-C(1)-C(2)	128.48(14)
N(2)-C(1)-C(2)	119.80(14)
C(3)-C(2)-C(1)	119.00(11) 118.42(15)
C(3)-C(2)-H(2A)	120.8
C(1)-C(2)-H(2A)	120.0
C(2) - C(3) - C(4)	120.0
C(2)-C(3)-H(3B)	119.8
C(4)- $C(3)$ -H(3B)	119.0
C(5) C(4) C(3)	121 13(15)
C(5) C(4) H(4A)	121.13(13)
C(3) - C(4) - H(4A)	119.4
C(4) C(5) N(2)	119.4
C(4) - C(5) - N(2)	120.0
N(2) C(5) H(5A)	120.9
$N(2) - C(5) - \Pi(3A)$ N(3) - C(6) - N(2)	120.9 128.64(14)
N(3) - C(0) - N(2) N(3) - C(6) - C(7)	126.04(14) 126.50(14)
N(2) C(6) C(7)	120.39(14) 104.71(13)
N(1) C(7) C(6)	104.71(13) 111.24(13)
N(1)-C(7)-C(8)	111.24(13) 120 37(14)
C(6) C(7) C(8)	120.37(14) 128 30(14)
C(13) C(8) C(9)	120.39(14) 110.23(15)
C(13)-C(8)-C(7)	119.25(13) 118 25(14)
C(9)-C(8)-C(7)	12250(14)
C(8)- $C(9)$ - $C(10)$	122.30(14) 119.83(16)
C(8)-C(9)-H(9A)	120.1
C(10)-C(9)-H(9A)	120.1
C(11)-C(10)-C(9)	120.72(16)
C(11)- $C(10)$ - $H(10A)$	119.6
C(9)-C(10)-H(10A)	119.6
C(10)-C(11)-C(12)	119.47(16)
C(10)- $C(11)$ - $H(11A)$	120.3
C(12)-C(11)-H(11A)	120.3
C(11)-C(12)-C(13)	120.45(17)
C(11)-C(12)-H(12A)	119.8
C(13)-C(12)-H(12A)	119.8
C(8)-C(13)-C(12)	120.29(16)
C(8)-C(13)-H(13A)	119.9
C(12)-C(13)-H(13A)	119.9
C(20)-N(4)-C(14)	106.17(12)
C(14)-N(5)-C(18)	122.16(13)
C(14)-N(5)-C(19)	106.26(12)
C(18)-N(5)-C(19)	131.58(14)
O(2)-N(6)-C(19)	117.05(14)
N(4)-C(14)-N(5)	111.81(13)
N(4)-C(14)-C(15)	128.23(14)
N(5)-C(14)-C(15)	119.97(14)

C(16)-C(15)-C(14)	118.23(15)
C(16)-C(15)-H(15A)	120.9
C(14)-C(15)-H(15A)	120.9
C(15)-C(16)-C(17)	120.58(15)
C(15)-C(16)-H(16A)	119.7
C(17)-C(16)-H(16A)	119.7
C(18)-C(17)-C(16)	121.03(15)
C(18)-C(17)-H(17A)	119.5
C(16)-C(17)-H(17A)	119.5
C(17)-C(18)-N(5)	118.01(15)
C(17)-C(18)-H(18A)	121.0
N(5)-C(18)-H(18A)	121.0
N(6)-C(19)-N(5)	128.29(14)
N(6)-C(19)-C(20)	126.93(14)
N(5)-C(19)-C(20)	104.77(13)
N(4)-C(20)-C(19)	110.99(13)
N(4)-C(20)-C(21)	120.36(13)
C(19)-C(20)-C(21)	128.63(14)
C(22)-C(21)-C(26)	118.51(14)
C(22)-C(21)-C(20)	123.18(14)
C(26)-C(21)-C(20)	118.30(14)
C(21)-C(22)-C(23)	119.94(15)
C(21)-C(22)-H(22A)	120.0
C(23)-C(22)-H(22A)	120.0
C(24)-C(23)-C(22)	120.92(15)
C(24)-C(23)-H(23A)	119.5
C(22)-C(23)-H(23A)	119.5
C(23)-C(24)-C(25)	119.59(15)
C(23)-C(24)-H(24A)	120.2
C(25)-C(24)-H(24A)	120.2
C(26)-C(25)-C(24)	119.84(16)
C(26)-C(25)-H(25A)	120.1
C(24)-C(25)-H(25A)	120.1
C(25)-C(26)-C(21)	121.19(15)
C(25)-C(26)-H(26A)	119.4
C(21)-C(26)-H(26A)	119.4

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	38(1)	32(1)	48(1)	-2(1)	10(1)	-10(1)
N(1)	29(1)	25(1)	26(1)	-1(1)	3(1)	1(1)
N(2)	30(1)	22(1)	28(1)	-2(1)	6(1)	2(1)
N(3)	31(1)	26(1)	39(1)	-5(1)	6(1)	-4(1)
C(1)	28(1)	21(1)	29(1)	-3(1)	6(1)	2(1)
C(2)	33(1)	27(1)	31(1)	-2(1)	3(1)	2(1)
C(3)	42(1)	31(1)	30(1)	-1(1)	2(1)	6(1)
C(4)	46(1)	28(1)	30(1)	3(1)	12(1)	4(1)
C(5)	38(1)	24(1)	33(1)	1(1)	13(1)	1(1)
C(6)	28(1)	24(1)	27(1)	-4(1)	4(1)	2(1)
C(7)	28(1)	21(1)	27(1)	-4(1)	5(1)	3(1)
C(8)	32(1)	23(1)	26(1)	-3(1)	4(1)	3(1)
C(9)	31(1)	32(1)	33(1)	-3(1)	4(1)	3(1)
C(10)	38(1)	41(1)	34(1)	-1(1)	-2(1)	10(1)
C(11)	50(1)	39(1)	33(1)	7(1)	5(1)	10(1)
C(12)	45(1)	38(1)	39(1)	8(1)	10(1)	0(1)
C(13)	34(1)	31(1)	32(1)	1(1)	2(1)	-1(1)
O(2)	38(1)	34(1)	46(1)	6(1)	7(1)	-10(1)
N(4)	27(1)	25(1)	26(1)	-1(1)	3(1)	1(1)
N(5)	29(1)	23(1)	27(1)	-1(1)	5(1)	2(1)
N(6)	31(1)	28(1)	38(1)	0(1)	5(1)	-5(1)
C(14)	27(1)	22(1)	28(1)	-3(1)	5(1)	2(1)
C(15)	31(1)	28(1)	29(1)	-1(1)	4(1)	4(1)
C(16)	39(1)	33(1)	29(1)	0(1)	1(1)	8(1)
C(17)	45(1)	30(1)	31(1)	4(1)	9(1)	4(1)
C(18)	37(1)	24(1)	33(1)	2(1)	12(1)	1(1)
C(19)	28(1)	24(1)	28(1)	-1(1)	4(1)	2(1)
C(20)	25(1)	22(1)	26(1)	-3(1)	6(1)	3(1)
C(21)	26(1)	23(1)	26(1)	-1(1)	6(1)	4(1)
C(22)	33(1)	27(1)	32(1)	-4(1)	1(1)	-3(1)
C(23)	37(1)	36(1)	29(1)	-5(1)	-3(1)	1(1)
C(24)	38(1)	33(1)	26(1)	3(1)	5(1)	8(1)
C(25)	34(1)	36(1)	33(1)	6(1)	6(1)	0(1)
C(26)	27(1)	33(1)	30(1)	1(1)	2(1)	-2(1)

Table 4. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for vsk7. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

	Х	У	Z	U(eq)
H(2A)	2715	1304	-589	37
H(3B)	3145	2864	-1382	42
H(4A)	4976	4349	-1238	41
H(5A)	6386	4286	-312	37
H(9A)	7438	1069	1777	39
H(10A)	7740	-160	2732	47
H(11A)	6053	-1304	3084	49
H(12A)	4042	-1204	2478	48
H(13A)	3721	13	1524	39
H(15A)	-2469	931	-485	36
H(16A)	-2130	2527	-1283	41
H(17A)	-325	4053	-1169	42
H(18A)	1130	4034	-258	37
H(22A)	1995	1657	2013	37
H(23A)	2370	421	2966	42
H(24A)	1077	-1554	3172	39
H(25A)	-619	-2315	2416	41
H(26A)	-1027	-1063	1471	36

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for vsk7.