Theoretically Investigating the Ability of Phenanthroline Derivatives

to Separate Transuranic Elements and their Bonding Properties

Yiying Zhang, Shouqiang Wu, Anyong Li

Supporting information

Table S1. The calculated S^2 of the ground state for the complexes $AnL(NO_3)_3$ complexes at the BP86/6-31G(d)/RECP level of theory.

complex	S^2	S(S+1)
NpL _{triazol} (NO ₃) ₃	6.02	6.00
PuLtriazol (NO3)3	8.80	8.75
AmLtriazol (NO3)3	12.09	12.00
CmL _{triazol} (NO ₃) ₃	15.76	15.75
NpL _{pyrazol} (NO ₃) ₃	6.02	6.00
PuL _{pyrazol} (NO ₃) ₃	8.80	8.75
AmL _{pyrazol} (NO ₃) ₃	12.09	12.00
CmL _{pyrazol} (NO ₃) ₃	15.76	15.75
NpL _{pyrrol} (NO ₃) ₃	6.02	6.00
PuL _{pyrrol} (NO ₃) ₃	8.80	8.75
AmL _{pyrrol} (NO ₃) ₃	12.09	12.00
CmL _{pyrrol} (NO ₃) ₃	15.76	15.75

Fig. S1 Optimized structures of the ligand $L_{triazol}$ in different conformers and the relative energies (ΔE , kcal/mol) at BP86/6-31G(d)/RECP level in the gas phase. Light blue, dark blue, red, and white colors denote C, N, O, and H atoms, respectively.

conformer 2 ($\triangle E = 0.17$)

Fig. S2 Optimized structures of the ligand $L_{pyrazol}$ in different conformers and the relative energies (ΔE , kcal/mol) at BP86/6-31G(d)/RECP level in the gas phase. Light blue, dark blue, red, and white colors denote N, O, C, and H atoms, respectively.

conformer 2 ($\triangle E = 0.27$)

Fig. S3 Optimized structures of the ligand L_{pyrrol} in different conformers and the relative energies (ΔE , kcal/mol) at BP86/6-31G(d)/RECP level in the gas phase. Light blue, dark blue, red, and white colors denote N, O, C, and H atoms, respectively.

Table S2. The relative energies (ΔE , kcal/mol) of conformer 2 compared to conformer 1 of the ligand L (L = L_{triazol}, L_{pyrazol} and L_{pyrrol}) at BP86/6-31G(d)/RECP level in the n-dodecane and cyclohexanone phase.

complex	ΔE (n-dodecane)	ΔE (cyclohexanone)
L _{triazol}	0.13	0.08
L _{pyrazol}	0.11	0.05
L _{pyrrol}	0.18	0.06

Fig. S4 The diagrams of the frontier MOs of the ligands $L_{triazol}$, $L_{pyrazol}$ and L_{pyrrol} obtained at the BP86/6-31G(d)/RECP level of theory in the gas phase. (The isosurface value is set as 0.02 a.u.)

Fig. S5 ESP plots of the optimized ligands $L_{triazol}$, $L_{pyrazol}$ and L_{pyrrol} in the n-dodecane organic phase.

Table S3. Calculated average natural atomic charges on the N and O atoms of ligands L_{triazol}, L_{pyrazol} and L_{pyrrol} in the n-dodecane organic phase.

charge	Ltriazol	Lpyrazol	Lpyrrol
Q_N	-0.374	-0.379	-0.381
Qo	-0.495	-0.511	-0.518

Fig. S6 The 3D-plots of LOL-pi of the five-membered ring and the carbonyl group in the optimized ligands $L_{triazol}$, $L_{pyrazol}$ and L_{pyrrol} in the gas phase. (The isosurface value is set as 0.04 a.u.)

1 (5)5	()	5	01
complex	An-N(L)	An-O(L)	An-O(NO3 ⁻)
NpL _{triazol} (NO ₃) ₃	2.561	2.403	2.450
PuLtriazol (NO3)3	2.589	2.430	2.451
AmLtriazol (NO3)3	2.640	2.487	2.466
CmLtriazol (NO3)3	2.789	2.536	2.474
NpL _{pyrazol} (NO ₃) ₃	2.558	2.396	2.456
PuL _{pyrazol} (NO ₃) ₃	2.588	2.422	2.458
AmL _{pyrazol} (NO ₃) ₃	2.639	2.480	2.472
CmL _{pyrazol} (NO ₃) ₃	2.782	2.521	2.480
NpL _{pyrrol} (NO ₃) ₃	2.583	2.419	2.454
PuL _{pyrrol} (NO ₃) ₃	2.596	2.442	2.455
AmL _{pyrrol} (NO ₃) ₃	2.652	2.516	2.470
CmL _{pyrrol} (NO ₃) ₃	2.775	2.576	2.477

Table S4. Average An-N(L), An-O(L) and An-O(NO₃⁻) bond lengths (Å) of the complexes AnL(NO₃)₃ at BP86/6-31G(d)/RECP level of theory in the gas phase.

Table S5. The charges of substituents on the amide group in the ligand L before and after coordination with actinide ion.

complex	qmonomer	qcomplex	$\Delta \mathbf{q}$
L _{triazol}	-0.4042	-0.2607	0.1435
Lpyrazol	-0.3463	-0.1885	0.1578
L _{pyrrol}	-0.2751	-0.1328	0.1423

Fig. S7 Average An-N(L), An-O(L) and An-O(NO₃⁻) bond lengths (Å) of the complexes $[AnL_2(NO_3)]^{2+}$ at BP86/6-31G(d)/RECP level of theory in the gas phase. Given distances are An-N(L) (\blacksquare), An-O(L) (\blacklozenge) and An-O(NO₃⁻) (\blacktriangle).

complexes [AIL2(NO3)]	at BF80/0-510(d)/RECF level of meory in the gas phas		
complex	An-N(L)	An-O(L)	An-O(NO3 ⁻)
$[Np(L_{triazol})_2(NO_3)]^{2+}$	2.584	2.464	2.463
$[Pu(L_{triazol})_2(NO_3)]^{2+}$	2.592	2.494	2.453
$[Am(L_{triazol})_2(NO_3)]^{2+}$	2.627	2.533	2.462
$[Cm(L_{triazol})_2(NO_3)]^{2+}$	2.670	2.534	2.461
$[Np(L_{pyrazol})_2(NO_3)]^{2+}$	2.580	2.475	2.465
$[Pu(L_{pyrazol})_2(NO_3)]^{2+}$	2.617	2.479	2.467
$[Am(L_{pyrazol})_2(NO_3)]^{2+}$	2.622	2.522	2.471
$[Cm(L_{pyrazol})_2(NO_3)]^{2+}$	2.656	2.534	2.479
$[Np(L_{pyrrol})_2(NO_3)]^{2+}$	2.604	2.482	2.457
$[Pu(L_{pyrrol})_2(NO_3)]^{2+}$	2.613	2.502	2.464
$[Am(L_{pyrrol})_2(NO_3)]^{2+}$	2.641	2.533	2.462
$[Cm(L_{pyrrol})_2(NO_3)]^{2+}$	2.678	2.544	2.462

Table S6. Average An-N(L), An-O(L) and An-O(NO₃⁻) bond lengths (Å) of the complexes $[AnL_2(NO_3)]^{2+}$ at BP86/6-31G(d)/RECP level of theory in the gas phase.

Fig. S8 Standard coloring method and chemical interpretation of $sign(\lambda_2)\rho$ on IRI isosurfaces (a.u.).

Table S7. The second-order stabilization energy $(E_{ij}^{(2)}, \text{ kcal mol}^{-1})$ between the donor natural bond orbital i (NBO(i)) and acceptor orbital j (NBO(j)) in the complexes AnL_{pyrazol}(NO₃)₃ of β spin. T_{fds} is the sum of 5*f*, 6*d* and 7*s*, T_{NO} is the sum of O and N donor atoms on the complexes.^a

complexes	$NBO(i) \rightarrow NBO(j)$	$E_{ m ij}{}^{(2)}$	T _{fds}	T _{NO}
NpL _{pyrazol} (NO ₃) ₃	$LP(N) \rightarrow LP^*(Np^{3+})$	31.96 / 0.49 / 12.83	45.28	117.00
	$LP(O) \rightarrow LP^*(Np^{3+})$	49.40 / 1.07 / 21.25	71.72	117.00
PuL _{pyrazol} (NO ₃) ₃	$LP(N) \rightarrow LP^*(Pu^{3+})$	6.52 / 1.29 / 19.57	27.38	02.25
	$LP(O) \rightarrow LP^*(Pu^{3+})$	27.30 / 1.98 / 35.69	64.97	92.55
AmL _{pyrazol} (NO ₃) ₃	$LP(N) \rightarrow LP^*(Am^{3+})$	4.62 / 2.21 / 11.83	18.66	15 5 1
	$LP(O) \rightarrow LP^*(Am^{3+})$	7.48 / 2.71 / 16.69	26.88	43.34
CmL _{pyrazol} (NO ₃) ₃	$LP(N) \rightarrow LP^*(Cm^{3+})$	2.22 / 1.98 / 9.95	14.15	22 50
	$LP(O) \rightarrow LP^*(Cm^{3+})$	4.07 / 1.79 / 13.49	19.35	33.30

a.../.../... represents the results of 5*f*, 6*d* and 7*s*, respectively.

Fig. S9 The interaction between the donor natural bond orbital i (NBO(i)) and acceptor orbital j (NBO(j)) of the β spin in the complexes AmL_{pyrazol}(NO₃)₃.

complex	gas	n-dodecane	cyclohexanone	water
NpL _{triazol} (NO ₃) ₃	-1074.800	-588.086	-157.291	-114.011
PuLtriazol (NO3)3	-1056.782	-573.871	-146.206	-103.107
AmLtriazol (NO3)3	-1062.100	-576.180	-144.473	-100.800
CmL _{triazol} (NO ₃) ₃	-1060.665	-566.886	-128.687	-84.289
NpL _{pyrazol} (NO ₃) ₃	-1089.537	-590.283	-160.076	-116.799
PuL _{pyrazol} (NO ₃) ₃	-1075.349	-577.354	-149.643	-106.493
AmL _{pyrazol} (NO ₃) ₃	-1066.040	-579.889	-147.687	-103.940
CmL _{pyrazol} (NO ₃) ₃	-1064.417	-570.499	-131.936	-87.469
NpL _{pyrrol} (NO ₃) ₃	-1083.081	-584.393	-157.528	-114.909
PuL _{pyrrol} (NO ₃) ₃	-1069.903	-572.485	-147.077	-104.262
AmL _{pyrrol} (NO ₃) ₃	-1060.608	-576.086	-145.652	-102.149
CmL _{pyrrol} (NO ₃) ₃	-1058.838	-566.566	-129.881	-85.709

Table S8. Calculated metal-ligand binding energies (ΔG_{BE} , kcal/mol) for the complexes AnL(NO₃)₃ in the gas phase, n-dodecane and cyclohexanone organic phases, and water phase at the PBE0/6-311g(d,p)/RECP level of theory.

Fig. S10 Metal-ligand binding energy of $[AnL_2(NO_3)]^{2+}$ in the gas (\blacksquare), n-dodecane (\blacktriangle), cyclohexanone (\triangledown) and water (\bigcirc).

complex	gas	n-dodecane	cyclohexanone	water
$[Np(L_{triazol})_2(NO_3)]^{2+}$	-834.369	-452.937	-119.325	-82.352
$[Pu(L_{triazol})_2(NO_3)]^{2+}$	-822.857	-442.001	-108.676	-71.787
$[Am(L_{triazol})_2(NO_3)]^{2+}$	-831.261	-445.104	-107.044	-69.600
$[Cm(L_{triazol})_2(NO_3)]^{2+}$	-828.373	-435.421	-91.847	-53.743
$[Np(L_{pyrazol})_2(NO_3)]^{2+}$	-855.445	-468.311	-127.575	-83.535
$[Pu(L_{pyrazol})_2(NO_3)]^{2+}$	-844.915	-457.924	-118.319	-80.566
$[Am(L_{pyrazol})_2(NO_3)]^{2+}$	-852.205	-460.132	-114.936	-76.461
$[Cm(L_{pyrazol})_2(NO_3)]^{2+}$	-849.114	-450.776	-100.015	-60.892
$[Np(L_{pyrrol})_2(NO_3)]^{2+}$	-845.561	-462.023	-121.810	-84.118
$[Pu(L_{pyrrol})_2(NO_3)]^{2+}$	-837.102	-452.004	-113.101	-75.516
$[Am(L_{pyrrol})_2(NO_3)]^{2+}$	-844.777	-454.247	-109.924	-72.188
$[Cm(L_{pyrrol})_2(NO_3)]^{2+}$	-842.153	-445.013	-95.813	-56.590

Table S9. Calculated metal-ligand binding energies (ΔG_{BE} , kcal/mol) for the complexes $[AnL_2(NO_3)]^{2+}$ in the gas phase, n-dodecane and cyclohexanone organic phases, and water phase at the PBE0/6-311g(d,p)/RECP level of theory.

Table S10. Changes in Gibbs free energies (ΔG , kcal/mol) for the complexes AnL(NO₃)₃ in the gas phase at the BP86 functional with 6-31G(d), 6-311G(d,p) basis set, respectively.^a

complex	6-31G(d)	6-311G(d,p)
NpL(NO ₃) ₃	-560.137 / -562.974 / -558.075	-569.745 / -571.515 / -565.197
PuL(NO ₃) ₃	-554.772 / -557.915 / -552.760	-563.576 / -565.646 / -559.074
$AmL(NO_3)_3$	-546.018 / -549.666 / -544.806	-555.821 / -558.331 / -552.131
CmL(NO ₃) ₃	-537.293 / -541.757 / -536.881	-547.263 / -550.442 / -544.193

^a.../... represents the results of the complexes of L_{triazol}, L_{pyrazol} and L_{pyrrol}, respectively.

complex	n-dodecane	cyclohexanone	water
NpLtriazol(NO3)3	-310.668	-95.923	-70.434
PuLtriazol(NO3)3	-305.294	-91.798	-67.449
AmLtriazol(NO3)3	-297.642	-86.072	-61.211
CmL _{triazol} (NO ₃) ₃	-288.550	-79.759	-56.184
NpL _{pyrazol} (NO ₃) ₃	-313.754	-98.454	-72.935
PuL _{pyrazol} (NO ₃) ₃	-308.509	-94.706	-70.284
AmL _{pyrazol} (NO ₃) ₃	-301.285	-89.964	-65.055
CmL _{pyrazol} (NO ₃) ₃	-292.974	-83.786	-60.109
NpL _{pyrrol} (NO ₃) ₃	-308.799	-96.303	-70.853
PuL _{pyrrol} (NO ₃) ₃	-304.264	-92.242	-68.085
AmL _{pyrrol} (NO ₃) ₃	-297.567	-87.766	-63.074
CmL _{pyrrol} (NO ₃) ₃	-288.982	-81.714	-58.233

Table S11. Changes in Gibbs free energies (ΔG , kcal/mol) for the complexes An(NO₃)₃ in the n-dodecane, cyclohexanone, and water at the BP86/6-31G(d)/RECP level of theory.

Fig. S11 Changes in Gibbs free energies of $[AnL_2(NO_3)]^{2+}$ in the gas (\blacksquare), n-dodecane (\blacktriangle), cyclohexanone (\bigtriangledown) and water (\bigcirc).

complex	gas	n-dodecane	cyclohexanone	water
$[Np(L_{triazol})_2(NO_3)]^{2+}$	-301.112	-158.882	-39.447	-25.198
$[Pu(L_{triazol})_2(NO_3)]^{2+}$	-296.992	-156.084	-35.871	-22.480
$[Am(L_{triazol})_2(NO_3)]^{2+}$	-294.321	-152.470	-32.298	-18.042
$[Cm(L_{triazol})_2(NO_3)]^{2+}$	-287.922	-144.928	-24.803	-11.663
$[Np(L_{pyrazol})_2(NO_3)]^{2+}$	-323.423	-176.477	-49.891	-35.910
$[Pu(L_{pyrazol})_2(NO_3)]^{2+}$	-319.361	-172.472	-45.075	-30.473
$[Am(L_{pyrazol})_2(NO_3)]^{2+}$	-316.552	-169.096	-42.797	-28.058
$[Cm(L_{pyrazol})_2(NO_3)]^{2+}$	-310.790	-161.386	-35.992	-21.922
$[Np(L_{pyrrol})_2(NO_3)]^{2+}$	-316.620	-170.195	-45.531	-30.535
$[Pu(L_{pyrrol})_2(NO_3)]^{2+}$	-313.049	-168.638	-42.296	-27.735
$[Am(L_{pyrrol})_2(NO_3)]^{2+}$	-311.330	-165.053	-39.062	-22.690
$[Cm(L_{pyrrol})_2(NO_3)]^{2+}$	-305.378	-157.572	-33.599	-19.825

Table S12. Changes in Gibbs free energies (ΔG , kcal/mol) for the complexes $[AnL_2(NO_3)]^{2+}$ in the gas, n-dodecane, cyclohexanone, and water phases at the BP86/6-31G(d)/RECP level of theory.

Fig. 12 The differences of ΔG ($\Delta \Delta G$, kcal/mol) and lnSF of ligands L_{triazol}, L_{pyrazol} and L_{pyrrol} in the gas phase. The black, blue, and red bars represent the values of $\Delta \Delta G$ for the separation of actinides from Pu, Am, and Cm, respectively. The lines represent lnSF values respectively.

Fig. S13 The differences of ΔG ($\Delta \Delta G$, kcal/mol) and lnSF of ligands L_{triazol}, L_{pyrazol} and L_{pyrrol} in the gas phase. The black, blue, and red bars represent the values of $\Delta \Delta G$ for the separation of actinides from Pu, Am, and Cm, respectively. The lines represent lnSF values respectively.

Table S13. Changes in Gibbs free energies (ΔG , kcal/mol) for the complexes EuL(NO₃)₃ (L = L_{triazol}, L_{pyrazol} and L_{pyrrol}) in the gas, n-dodecane, cyclohexanone, and water phases at the BP86/6-31G(d)/RECP level of theory.

complex	gas	n-dodecane	cyclohexanone	water
EuL _{triazol} (NO ₃) ₃	-545.018	-297.898	-86.522	-60.729
EuL _{pyrazol} (NO ₃) ₃	-549.106	-302.182	-90.082	-62.966
EuL _{pyrrol} (NO ₃) ₃	-544.949	-298.532	-87.910	-62.631

Table S14. The differences of ΔG ($\Delta \Delta G$, kcal/mol) with the reactions of the complexes ML(NO₃)₃ (M = Np, Pu, Am, Cm, Eu) in the gas phase at the theoretical level of PBE0 and BP86, respectively. ^a

$\Delta \Delta G$	PBE0	BP86
$\Delta\Delta G_{Np/Pu}$	-2.08 / -0.71 / -0.29	-5.36 / -5.06 / -5.32
$\Delta\Delta G_{Np/Am}$	-5.05 / -3.53 / -2.62	-14.12 / -13.31 / -13.27
$\Delta\Delta G_{Np/Cm}$	-7.16 / -5.69 / -5.61	-22.84 / -21.22 / -21.19
$\Delta\Delta G_{Pu/Am}$	-2.97 / -2.82 / -2.33	-8.75 / -8.25 / -7.95
$\Delta\Delta G_{Pu/Cm}$	-5.07 / -4.98 / -5.32	-17.48 / -16.16 / -15.88
$\Delta\Delta G_{Am/Cm}$	-2.10 / -2.16 / -2.99	-8.73 / -7.91 / -7.93
$\Delta\Delta G_{Np/Eu}$	-3.58 / -3.23 / -3.03	-15.12 / -13.87 / -13.13
$\Delta\Delta G_{Pu/Eu}$	-1.49 / -2.52 / -2.74	-9.75 / -8.81 / -7.81
$\Delta\Delta G_{Eu/Am}$	-1.47 / -0.30 / 0.41	1.00 / 0.56 / 0.14
$\Delta\Delta G_{Eu/Cm}$	-3.58 / -2.46 / -2.58	-7.73 / -7.35 / -8.07

^a.../... represents the results of the complexes of L_{triazol}, L_{pyrazol} and L_{pyrrol}, respectively.

Cartesian Coordinates

NpL_{pyrazol}(NO₃)₃

С	-3.44290400	2.55413100	0.10686700
С	-2.80355300	3.77529500	-0.03831800
С	-1.38116500	3.84276600	-0.08462700
С	-0.67540900	2.59649100	-0.02227600
С	-2.66155600	1.36644600	0.17882700
С	-0.63921100	5.06101700	-0.17717700
С	0.77555200	2.59622400	-0.01644700
С	1.48451800	3.84092900	-0.08712100
С	0.74550300	5.06007800	-0.17940400
С	2.90701700	3.76849300	-0.05200100
Н	3.49438400	4.69167100	-0.11080900
С	3.54486800	2.54424400	0.06355000
С	2.75828300	1.35789300	0.13700300
Н	-1.18988800	6.00626100	-0.23870100
Н	-4.52846500	2.46891900	0.17621900
Н	-3.38872800	4.69978700	-0.09776900
Н	1.29722500	6.00451000	-0.24416500
Н	4.63142700	2.45443300	0.10093900
Ν	1.39725400	1.40168700	0.08395900
Ν	-1.30130000	1.39998200	0.07214700
С	3.22492100	-0.02562300	0.27668600
С	-3.12899300	-0.00600000	0.42174900
0	-2.28562400	-0.93793000	0.55108400
0	2.37237700	-0.96487900	0.36048200
Ν	4.57391300	-0.40316000	0.32205600
С	5.01230500	-1.71856700	0.42176700
С	6.70942200	-0.27770000	0.33838600
С	6.38957900	-1.66750200	0.43413000
Н	4.29842300	-2.53716000	0.46565700
Н	7.69433600	0.19183000	0.31676700
Н	7.07634400	-2.50964800	0.49981000
Ν	-4.48100800	-0.36527600	0.53785100
С	-4.92062100	-1.66959300	0.72846300
С	-6.29611200	-1.60804800	0.79291100
Н	-4.20741100	-2.48837200	0.78576500
С	-6.61289800	-0.22351400	0.63206800
Н	-6.98390500	-2.44047500	0.93144600
Н	-7.59563000	0.25108800	0.62311000
Ν	-5.52660500	0.53444300	0.47724000
Ν	5.62338400	0.49316100	0.26975600

0.03245400	-3.39757800	-1.30192900
-0.84554200	-3.06741800	-0.41191200
0.90420700	-2.44942800	-1.57331700
0.06765200	-4.48724400	-1.84816400
-0.63627200	-0.05093500	-2.81411600
-1.42352500	-0.77146500	-2.07606400
0.42282100	0.39215800	-2.18141800
-0.85901200	0.20907000	-3.98502500
0.18046200	-1.07305400	2.81787600
0.13046800	0.09952900	2.24748300
0.13517900	-2.07433300	1.98414400
0.26065800	-1.21880800	4.02754800
0.03646600	-0.76781200	-0.06958200
	0.03245400 -0.84554200 0.90420700 0.06765200 -0.63627200 -1.42352500 0.42282100 -0.85901200 0.18046200 0.13046800 0.13517900 0.26065800 0.03646600	0.03245400-3.39757800-0.84554200-3.067418000.90420700-2.449428000.06765200-4.48724400-0.63627200-0.05093500-1.42352500-0.771465000.422821000.39215800-0.859012000.209070000.18046200-1.073054000.13517900-2.074333000.26065800-1.218808000.03646600-0.76781200

PuL pyrazol	(N	O 3))3
--------------------	----	-------------	----

С	3.34960500	2.64858300	-0.39751000
С	2.68679100	3.85057300	-0.27495000
С	1.28826100	3.87574800	-0.15446300
С	0.61389300	2.62875600	-0.14932200
С	2.59171100	1.46560500	-0.39278400
С	0.54292500	5.09256200	-0.04675200
С	-0.83195600	2.60936800	-0.04545200
С	-1.53264200	3.83886600	0.03834000
С	-0.81217700	5.07491700	0.04430700
С	-2.93364000	3.77712400	0.11157100
Н	-3.50885100	4.69640200	0.18227000
С	-3.57330600	2.55773200	0.08680300
С	-2.78722100	1.39405000	0.00567200
Н	1.08628200	6.03346200	-0.04409600
Н	4.42572300	2.59019400	-0.48885500
Н	3.24222200	4.78467700	-0.27741600
Н	-1.37442900	6.00153800	0.12039300
Н	-4.65075300	2.47263800	0.12199800
Ν	-1.45766900	1.42717400	-0.04486300
Ν	1.26486700	1.46341200	-0.26402200
С	-3.29221900	-0.01256900	-0.00466600
С	3.12117800	0.07787000	-0.59007600
0	2.34313500	-0.83843800	-0.81630500
0	-2.49778600	-0.94343000	0.04341900
Ν	-4.64186100	-0.33233000	-0.06510600
С	-5.11130600	-1.62710000	-0.03123500
С	-6.73998400	-0.15239700	-0.23567700
С	-6.46696800	-1.54491200	-0.13777400
Н	-4.42622400	-2.45569700	0.06694700
Н	-7.70009400	0.33744200	-0.33704900
Н	-7.17316200	-2.36185800	-0.14573800
Ν	4.47259000	-0.22600200	-0.52945700
С	4.95664800	-1.51341600	-0.60503000
С	6.31032500	-1.41901500	-0.48522800
Н	4.27869200	-2.34651700	-0.71546100
С	6.56643000	-0.02740100	-0.33812700
Н	7.02529100	-2.22828300	-0.48970400
Н	7.52026500	0.46954400	-0.21434100
Ν	5.46515000	0.68779600	-0.36142800
Ν	-5.64673400	0.57436200	-0.19302000
Ν	0.18271900	-3.56912600	1.07724200
0	1.17124600	-2.98523100	0.53738300
0	-0.88579200	-2.86448900	1.14988600

N0.899065000.224264002.67437500O1.67891400-0.456430001.94010700O-0.286351000.376893002.22002900O1.247741000.709817003.72170700N-0.46135500-1.31422400-2.73796200O-0.54699500-0.15072700-2.21765900O-0.16400300-2.24944000-1.92947400O-0.65092400-1.50638300-3.91280600Pu-0.00115500-0.864561000.09704400	0	0.23432700	-4.69736700	1.49155500
O1.67891400-0.456430001.94010700O-0.286351000.376893002.22002900O1.247741000.709817003.72170700N-0.46135500-1.31422400-2.73796200O-0.54699500-0.15072700-2.21765900O-0.16400300-2.24944000-1.92947400O-0.65092400-1.50638300-3.91280600Pu-0.00115500-0.864561000.09704400	Ν	0.89906500	0.22426400	2.67437500
O-0.286351000.376893002.22002900O1.247741000.709817003.72170700N-0.46135500-1.31422400-2.73796200O-0.54699500-0.15072700-2.21765900O-0.16400300-2.24944000-1.92947400O-0.65092400-1.50638300-3.91280600Pu-0.00115500-0.864561000.09704400	0	1.67891400	-0.45643000	1.94010700
O1.247741000.709817003.72170700N-0.46135500-1.31422400-2.73796200O-0.54699500-0.15072700-2.21765900O-0.16400300-2.24944000-1.92947400O-0.65092400-1.50638300-3.91280600Pu-0.00115500-0.864561000.09704400	0	-0.28635100	0.37689300	2.22002900
N-0.46135500-1.31422400-2.73796200O-0.54699500-0.15072700-2.21765900O-0.16400300-2.24944000-1.92947400O-0.65092400-1.50638300-3.91280600Pu-0.00115500-0.864561000.09704400	0	1.24774100	0.70981700	3.72170700
O-0.54699500-0.15072700-2.21765900O-0.16400300-2.24944000-1.92947400O-0.65092400-1.50638300-3.91280600Pu-0.00115500-0.864561000.09704400	Ν	-0.46135500	-1.31422400	-2.73796200
O-0.16400300-2.24944000-1.92947400O-0.65092400-1.50638300-3.91280600Pu-0.00115500-0.864561000.09704400	0	-0.54699500	-0.15072700	-2.21765900
O-0.65092400-1.50638300-3.91280600Pu-0.00115500-0.864561000.09704400	0	-0.16400300	-2.24944000	-1.92947400
Pu -0.00115500 -0.86456100 0.09704400	0	-0.65092400	-1.50638300	-3.91280600
	Pu	-0.00115500	-0.86456100	0.09704400

AmL _{pyrazol} (NO ₃) ₃			
С	-3.43475800	2.61704700	0.20140600
С	-2.78033900	3.83259700	0.04840700
С	-1.36450400	3.87755400	-0.03564900
С	-0.66988700	2.62436800	0.01714400
С	-2.66135600	1.42765900	0.24979100
С	-0.61941100	5.09829200	-0.15498300
С	0.78642500	2.61319800	-0.02370800
С	1.49188600	3.85797600	-0.12219400
С	0.75722100	5.08819300	-0.19720600
С	2.90944000	3.79623100	-0.13178100
Н	3.48973800	4.72269800	-0.20742200
С	3.55659700	2.57207500	-0.03990600
С	2.77291500	1.39033500	0.05288800
Н	-1.16930900	6.04480000	-0.20287000
Н	-4.52060300	2.54555700	0.27867700
Н	-3.35332000	4.76575400	0.00632300
Н	1.31655200	6.02667300	-0.28094700
Н	4.64407600	2.48594200	-0.03694500
Ν	1.41985500	1.42186900	0.05337700
Ν	-1.31276000	1.44069000	0.13708200
С	3.27638800	-0.00972400	0.15398100
С	-3.16587400	0.04051300	0.49461500
0	-2.36229400	-0.87852000	0.74621900
0	2.46615400	-0.95800100	0.24263000
Ν	4.64304600	-0.34047800	0.14978200
С	5.11663400	-1.64755800	0.19788900
С	6.77464800	-0.16136600	0.12025100
С	6.49069200	-1.56227100	0.17923700
Н	4.42315400	-2.48417600	0.23271900
Н	7.74742800	0.33256500	0.09083100
Н	7.19954700	-2.38822000	0.20169600
Ν	-4.53162700	-0.28837900	0.46806000
С	-5.01299200	-1.58052900	0.64954900
С	-6.38236300	-1.50235300	0.53154500
Н	-4.32483200	-2.40382300	0.82623600
С	-6.65482700	-0.12060300	0.27681700
Н	-7.09534900	-2.32145500	0.60837000
Н	-7.62126500	0.36196800	0.12069900
Ν	-5.54789500	0.61885700	0.23379100
Ν	5.67010800	0.58312100	0.10162600
0	0.44597900	-1.21885100	4.10419200
Ν	0.00460600	-3.45128700	-1.22011800
0	-0.84453400	-3.09235000	-0.30525000

0	0.88719100	-2.54415900	-1.52777100
0	-0.02015600	-4.55391300	-1.74992900
Ν	-0.74788600	-0.09107000	-2.73351400
0	-1.53458700	-0.77783400	-1.96679600
0	0.37633600	0.27506100	-2.18086100
0	-1.03394700	0.21057400	-3.88589900
Ν	0.31341800	-1.08936600	2.89336800
0	0.27169300	0.07645400	2.31496400
0	0.20239900	-2.10332900	2.08704300
Am	0.02036900	-0.82428300	-0.00061500

CmL _{pyrazol} (NO ₃) ₃			
С	-3.44870500	2.71013200	0.23864800
С	-2.78174900	3.92683800	0.16334600
С	-1.36802400	3.95902800	0.10048200
С	-0.68122000	2.69909400	0.11030900
С	-2.68137200	1.51807600	0.24404600
С	-0.62013100	5.18532900	0.03010600
С	0.77858800	2.68796700	0.06115100
С	1.48268700	3.93611200	-0.00810300
С	0.75203900	5.17440600	-0.02460900
С	2.89652600	3.87942100	-0.05544700
Н	3.47387900	4.80917400	-0.11105900
С	3.54586300	2.65140000	-0.03168400
С	2.75946100	1.47292700	0.04369600
Н	-1.17058200	6.13274000	0.02007600
Н	-4.53662000	2.64292500	0.28354200
Н	-3.34528700	4.86669100	0.15654700
Н	1.31485400	6.11298100	-0.07968200
Н	4.63282200	2.56543200	-0.06729200
Ν	1.41360200	1.49676400	0.09042800
Ν	-1.33469100	1.51695800	0.17344900
С	3.28004400	0.05948800	0.07965300
С	-3.22575200	0.12201100	0.39890500
0	-2.46000100	-0.82144300	0.64302000
0	2.49362400	-0.89463500	0.16671000
Ν	4.65015700	-0.25136500	0.01154800
С	5.13295200	-1.55751300	-0.01096000
С	6.77757100	-0.05522400	-0.08573200
С	6.50349100	-1.46088700	-0.07469400
Н	4.44415300	-2.39895500	0.01404600
Н	7.74640000	0.44556500	-0.12926000
Н	7.21801300	-2.28139700	-0.11165500
Ν	-4.59404100	-0.17548600	0.28599200
С	-5.09890800	-1.47145900	0.35468700
С	-6.45896000	-1.36415700	0.17962500
Н	-4.42817300	-2.31531900	0.50088600
С	-6.70339600	0.03696200	0.00913600
Н	-7.18451200	-2.17563300	0.16466900
Н	-7.65619100	0.54271400	-0.15741400
Ν	-5.58849500	0.76127000	0.06801800
Ν	5.67052200	0.68154500	-0.03472900
Ν	-0.17628700	-3.67731200	-0.83848600
0	-1.18239500	-3.06576300	-0.28797900
0	0.89229400	-2.94518200	-1.00005800

0	-0.22368400	-4.85197900	-1.18203900
Ν	-0.41836800	-0.05111700	-2.77329300
0	-1.39172200	-0.50795700	-2.03985700
0	0.74820800	-0.02750300	-2.19779700
0	-0.59041700	0.34050800	-3.92306300
Ν	0.42311000	-1.18175000	2.88516500
0	0.14244100	-0.03603900	2.31777400
0	0.48222200	-2.19674000	2.08213000
0	0.61720300	-1.27562800	4.09250000
Cm	-0.02182800	-0.90817000	0.00764400

EuLpyrazol(NO3)3			
С	-3.42305400	2.55318900	0.31134200
С	-2.76669000	3.76861000	0.15479300
С	-1.35585700	3.80691800	0.04152600
С	-0.66208300	2.55249200	0.08029500
С	-2.64908000	1.36538000	0.34021500
С	-0.61618100	5.03224300	-0.10172400
С	0.79565300	2.54395300	-0.00345500
С	1.49245800	3.79104400	-0.13020200
С	0.75459400	5.02437500	-0.18597600
С	2.90620100	3.73923100	-0.19140400
Н	3.47747900	4.66852700	-0.29592800
С	3.56379900	2.51782900	-0.11283300
С	2.78549200	1.33845700	0.01708800
Н	-1.17104100	5.97641900	-0.13905600
Н	-4.50797100	2.48389400	0.40241700
Н	-3.33698900	4.70397900	0.12521200
Н	1.31145200	5.96209800	-0.29215300
Н	4.65142000	2.43943500	-0.13876200
Ν	1.43930600	1.35738400	0.05831500
Ν	-1.30704100	1.37209400	0.21626000
С	3.31322400	-0.07054800	0.10938600
С	-3.17178100	-0.03336100	0.56786300
0	-2.38798700	-0.96657900	0.78006900
0	2.53246800	-1.03213000	0.13493700
Ν	4.68988000	-0.36200800	0.17053700
С	5.19183900	-1.65983900	0.20564000
С	6.81307500	-0.13400000	0.29283400
С	6.56040200	-1.54337300	0.28280200
Н	4.51688800	-2.51155300	0.16742900
Н	7.77354200	0.38155100	0.34767200
Н	7.28674700	-2.35317400	0.32559500
Ν	-4.54738000	-0.33322300	0.56122000
С	-5.04252700	-1.62586000	0.70204300
С	-6.41238500	-1.52581500	0.62204400
Н	-4.36094500	-2.46407800	0.82654400
С	-6.67228800	-0.13089200	0.43026600
Н	-7.13453800	-2.33822000	0.68259400
Н	-7.63578600	0.36957000	0.31819500
Ν	-5.55743600	0.59536700	0.38972100
Ν	5.69542300	0.58580100	0.22628400
Ν	-0.01883100	-3.57281800	-1.34325200
0	-0.92111000	-3.22561300	-0.48895300
0	0.90311200	-2.69130400	-1.58481300

0	-0.02511700	-4.67163100	-1.89564400
Ν	-0.86498600	0.00337000	-2.70889500
0	-1.64918200	-0.69349000	-1.95543500
0	0.31361900	0.25710300	-2.22490200
0	-1.20997600	0.42046100	-3.81475000
Ν	0.41725200	-1.33783900	2.81911400
0	0.32638500	-0.14966200	2.30974900
0	0.28825200	-2.32368300	1.98862100
0	0.61465600	-1.51851600	4.02053200
Eu	0.01264500	-0.96151100	-0.06040400