Pentanuclear M^{II} – Mn^{II} (M = Ni and Cu) complexes of N_2O_2 donor ligands with the variation of carboxylate anions: syntheses, structures, magnetic properties and catecholase-like activities

Sayantan Ganguly,^{a,b} Pradip Bhunia,^a Júlia Mayans,^c Ashutosh Ghosh^{a,d*}

^aDepartment of Chemistry, University College of Science, University of Calcutta, 92, A. P. C. Road, Kolkata-700 009, India; e-mail: ghosh_59@yahoo.com

^bDepartment of Chemistry, Taki Government College, Taki, Hasnabad, West Bengal 743429, India

^cDepartament de Química Inorgànica i Orgànica and Institut de Nanociència i Nanotecnologia (IN²UB).Universitat de Barcelona (UB), Martí iFranqués 1-11, Barcelona-08028, Spain.

^dRani Rashmoni Green University, Tarakeswar, Hooghly 712410, West Bengal, India

Figure S1. Representative IR spectrum of complex 1.

Figure S2. Representative IR spectrum of complex 2.

Figure S3. Representative IR spectrum of complex 3.

Figure S4. Representative UV-Vis spectra of NiL¹, CuL¹, CuL² and complexes (1–3) in DMFacetonitrile solution (left) d-d transition and (right) charge transfer band.

Figure S5. The structure of complex 3 with ellipsoid at 30% probability. Hydrogen atoms omitted for clarity.

Figure S6.The 1D chain of complex **1** formed by intermolecular hydrogen bonding interactions. The other H-atoms are removed for picture clarity.

Figure S7. Formation of intermolecular C–H····· π in complex 1. Other H-atoms are removed for picture clarity.

Figure S8.The 1D chain of complex **2** formed by intermolecular hydrogen bonding interactions. The other H-atoms are removed for picture clarity.

Figure S9. Formation of intermolecular C–H····· π in complex **2**. Other H-atoms are removed for picture clarity.

Figure S10. The 1D chain of complex 3 formed by intermolecular hydrogen bonding interactions. The other H-atoms are removed for picture clarity.

Figure S11. Representative ESI mass spectrum of complex 1.

Figure S12. Representative ESI mass spectrum of complex 2.

Figure S13. Representative ESI mass spectrum of complex 3.

Figure S14. Increase in absorbance around 400 nm, after mixing equal volumes of DMF-acetonitrile solutions of 3,5-DTBC $(1.0 \times 10^{-2} \text{ M})$ and 3 $(1.5 \times 10^{-5} \text{ M})$. The spectra were recorded in every 5 min interval.

Figure S15.Representative UV-vis spectra of 3,5-DTBC (Blank) in DMF-acetonitrile solution.

Figure S16. Representative UV-vis spectra of the "metalloligand" (a) [NiL¹], (b) [CuL¹] and (c) [CuL²] with 3,5-DTBC in DMF-acetonitrile solution. The spectra were recorded in every 3 mininterval.

Figure S17. Representative UV-vis spectra of (a) $Mn(C_6H_5CO_2)_2 \cdot 4H_2O$ and (b) $Mn(m-(NO_2)C_6H_4CO_2)_2 \cdot 2H_2O$ with 3,5-DTBC in DMF-acetonitrile solution. The spectra were recorded in every 3 min interval.

Figure S18. Plot of initial rates *vs.* substrate concentration for the oxidation reaction of 3,5-DTBC catalyzed by complex **3**. Inset shows the Lineweaver–Burk plot. Symbols and solid lines represent the experimental and simulated profiles, respectively.

Figure S19. Representative ESI mass spectrum of complex 2 with 3,5-DTBC.

Figure S20. Representative ESI mass spectrum of complex 2 with 3,5-DTBC. (Expanded)

Figure S21.Increase of the absorption band at around 353 nm during the estimation of H_2O_2 iodometrically forcomplexes (1–3). The spectra were recorded at different time interval for complexes (1–3).

Figure S22. Plot of H_2O_2 estimation of complexes (1–3).

1						
	Bond distances (Å)					
Mn1–O1	2.254(5)	2.197(5)				
Mn1–O3	2.146(5)	Mn1–O5	2.085(5)			
Mn1–O7	2.287(5)	Mn1–O8	2.310(5)			
Mn2–O4	2.188(4)	Mn2–O6	2.127(4)			
Mn2–O8	2.181(5)	Nil-O1	1.876(5)			
Ni1–O2	1.854(5)	Ni1–N1	1.897(5)			
Ni1–N2	1.891(5)					
Bond angles(°)						
O1–Mn1–O2	65.13(18)	O1–Mn1–O3	139.02(17)			
O1–Mn1–O4	165.93(15)	O1–Mn1–O5	87.28(18)			
O1–Mn1–O7	82.59(17)	O1–Mn1–O8	113.16(18)			
O2–Mn1–O3	86.21(18)	O2–Mn1–O4	112.18(16)			
O2–Mn1–O5	91.53(19)	O2–Mn1–O7	121.66(17)			

Table ST1. Selected bond distances (Å) and angles (°) for complex 1 $\,$

O2–Mn1–O8	178.10(18)	O3–Mn1–O4	51.26(15)		
O3–Mn1–O5	123.90(19)	O3–Mn1–O7	89.24(18)		
O3–Mn1–O8	94.85(17)	O4–Mn1–O5	78.91(17)		
O4–Mn1–O7	109.22(15)	O4–Mn1–O8	69.69(15)		
O5–Mn1–O7	135.89(19)	O5–Mn1–O8	89.19(18)		
O7–Mn1–O8	56.83(16)	O4–Mn2–O6	92.33(18)		
O4–Mn2–O8	84.76(17)	O4–Mn2–O6 ^a	87.67(18)		
O4–Mn2–O8 ^a	95.24(17)	O6–Mn2–O8	89.67(18)		
O6–Mn2–O8 ^a	90.33(18)	01-Ni1-O2	80.00(2)		
O1-Ni1-N1	92.10(2)	O1–Ni1–N2	169.00(2)		
O2-Ni1-N1	171.40(2)	O2-Ni1-N2	90.40(2)		
N1-Ni1-N2	97.90(2)	Ni1–O1–Mn1	103.50(2)		
Ni1–O2–Mn1	106.40(2)	Mn1–O4–Mn2	90.33(17)		
Mn1–O8–Mn2	104.8(2)				
Symmetry Element ^a = $1-x, 1-y, 1-z$					

Table ST2. Selected bond distances (Å) and angles (°) for complexes 2 & 3

	2	3		
Bond distances (Å)				
Mn1–O1	2.188(3)	2.201(2)		
Mn1–O2	2.197(3)	2.151(2)		
Mn1–O3	2.110(3)	2.086(2)		
Mn1–O5	2.097(3)	2.127(3)		
Mn1–O7	2.351(3)	2.237(2)		
Mn1–O8	2.251(3)	2.311(2)		
Mn2–O4	2.134(3)	2.167(2)		
Mn206	2.151(3)	2.136(3)		
Mn2–O8	2.206(3)	2.278(2)		

Cu1–O1	1.918(3)	1.959(2)
Cu1–O2	1.936(4)	1.953(2)
Cu1–N1	1.955(5)	1.978(3)
Cu1–N2	1.952(3)	1.974(3)
Cu1–O15		2.569(3)
Bond ang	les(°)	1
O1-Mn1-O2	68.09(13)	73.24(8)
O1-Mn1-O3	90.42(13)	97.59(9)
O1-Mn1-O5	93.65(13)	167.79(10)
O1-Mn1-O7	111.61(13)	82.89(9)
O1-Mn1-O8	167.57(13)	89.01(8)
O2-Mn1-O3	146.43(14)	98.79(9)
O2-Mn1-O5	95.86(12)	97.86(9)
O2–Mn1–O7	81.53(11)	101.77(9)
O2-Mn1-O8	103.33(13)	155.29(9)
O3–Mn1–O5	111.56(14)	91.95(10)
O3–Mn1–O7	83.16(14)	158.62(10)
O3–Mn1–O8	92.90(13)	100.54(9)
O5–Mn1–O7	151.05(14)	91.00(9)
O5–Mn1–O8	96.25(13)	96.73(9)
O7–Mn1–O8	57.03(12)	58.08(9)
O4-Mn2-O6	94.94(12)	88.79(9)
O4-Mn2-O8	89.90(12)	91.31(8)
O4–Mn2–O6 ^a	85.06(12)	91.21(9)
O4-Mn2-O8 ^a	90.10(12)	88.69(8)
O6-Mn2-O8	89.48(11)	90.60(9)
O6–Mn2–O8 ^a	90.53(12)	89.40(9)
O1–Cu1–O2	79.12(14)	83.16(10)
O1–Cu1–N1	92.19(18)	89.05(10)
O1–Cu1–N2	167.90(2)	172.36(11)

O2–Cu1–N1	171.30(18)	171.31(10)		
02–Cu1–N2	90.56(18)	89.78(11)		
N1–Cu1–N2	98.10(2)	98.18(12)		
01–Cu1–O15		93.75(9)		
O2-Cu1-O15		86.92(10)		
015-Cu1-N1		89.77(10)		
O15-Cu1-N2		88.79(10)		
Cu1–O1–Mn1	102.41(15)	99.62(10)		
Cu1–O2–Mn1	101.46(14)	101.50(10)		
Mn1–O8–Mn2	107.35(14)	106.62(9)		
Symmetry elements: $a = 1-x, 1-y, 1-z$ for complex 2 ; $a = -x, 1-y, 1-z$ for complex 3				

 Table ST3. Representation of the d-d band and CT band in the complexes (1–3)

Complex	d-d band	CT band
	$(\lambda_{max}(nm) (\epsilon, M^{-1}cm^{-1}) \text{ in DMF})$	$(\lambda_{max}(nm) (\epsilon, M^{-1}cm^{-1}) \text{ in DMF})$
[NiL ¹]	581(114)	422 (6806), 314(23249)
[CuL ¹]	593(193)	378 (17285), 312(36459)
[CuL ²]	595(106)	381 (7252), 300 (17118)
1	572(200)	419(18901), 315(65832)
2	588(468)	379(32445), 312(75865)
3	591(416)	378(30104), 298(76980)

Table ST4. Bond valence sum (BVS)^a calculations for complex 1.

Atom	Mn ^{II}	Mn ^{III}
Mn1	<u>1.81</u>	1.67
Mn2	2.04	1.86

 Table ST5. Bond valence sum (BVS)^a calculations for complex 2.

Atom	Mn ^{II}	Mn ^{III}
Mn1	<u>1.91</u>	1.75
Mn2	2.04	1.88

 Table ST6. Bond valence sum (BVS)^a calculations for complex 3.

Atom	Mn ^{II}	Mn ^{III}
Mn1	<u>1.97</u>	1.79
Mn2	<u>1.92</u>	1.74

^aThe underlined value is the one closest to the charge for which it was calculated. The oxidation state is the nearest whole number to the underlined value.

Table ST7. Geometric features (Distances in (Å) and Angles in $(^{0})$) of the H-bond interactions obtained for complex 1

Donor-H·····Acceptor	D-H (Å)	H·····A (Å)	DA (Å)	∠D–H·····A	Symmetry
				(⁰)	Element
С18-Н18 …ОЗ	0.95	2.51	3.439(7)	168	1-x, 1-y, 2-z
С19–Н19 …О7	0.95	2.52	3.355(7)	146	1-x, 1-y, 2-z

Table ST8. Geometric features (Distances in (A⁰) and Angles in (⁰)) of the C-H $/\pi$ interactions obtained for complex 1

C–H·····Cg(Ring)	H·····Cg	∠C–H·····Cg	C·····Cg	Symmetry Element
	(A)	(")	(A)	
C7–H7····Cg1	2.97	133	3.691(8)	2-x,2-y,2-z

Table ST9 Geometric features (Distances in (Å) and Angles in (⁰)) of the H-bond interactions obtained for complex **2**

Donor-H·····Acceptor	D-H(Å)	HA (Å)	DA (Å)	∠D–H·····A	Symmetry
				(°)	Element
C21–H21 …O3	0.95	2.58	3.262(7)	129	x, 1/2-y, -1/2+z

С21-Н21 …О7	0.95	2.56	3.470(7)	160	x, 1/2-y, -1/2+z
C45–H45 …O14	0.95	2.38	3.310(7)	168	x, 1/2-y, 1/2+z

Table ST10.Geometric features (Distances in (A⁰) and Angles in (⁰)) of the C-H / π interactions obtained for complex 2

C-H·····Cg(Ring)	H·····Cg (Å)	∠C-H·····Cg (⁰)	C·····Cg (Å)	Symmetry Element		
C30–H30…Cg1	2.50	156	3.397(7)	1-x,1/2+y,3/2-z		
Cg1 = C16 - C17 - C22 - C23 - C24 - C25 - C24 - C25 - C25 - C24 - C25 - C25 - C24 - C25						

Table ST11. Geometric features (Distances in (Å) and Angles in $(^0)$) of the H-bond interactions obtained for complex **3**

Donor-H·····Acceptor	D-H(Å)	HA (Å)	DA(Å)	∠D–H·····A	Symmetry
				(⁰)	Element
С13-Н13В …012	0.99	2.57	3.438(8)	147	1-x, 1/2+y, 3/2-z
С38–Н38 …О13	0.95	2.26	3.050(6)	140	-x, -1/2+y, 1/2-z
C47–H47A …O11	0.98	2.45	3.405(7)	165	1-x, 1/2+y, 3/2-z

Table ST12. Different concentrations of substrate (3,5-DTBC) in DMF/Acetonitrile for kinetic measurement

Metal complex and its	Concentration of 3,5-DTBC (M)
concentration (M)	
$1(5.0 \times 10^{-6})$	$5.0 \times 10^{-5}, 1.0 \times 10^{-4}, 1.5 \times 10^{-4}, 2.5 \times 10^{-4}, 3.5 \times 10^{-4}, 5.0 \times 10^{-4}, 7.5 \times 10^{-4}, 1.5 $
	10^{-4} , 1.0×10^{-3} , 1.5×10^{-3} , 1.75×10^{-3}
$2(7.5 \times 10^{-6})$	$7.5 \times 10^{-5}, 1.5 \times 10^{-4}, 2.25 \times 10^{-4}, 3.75 \times 10^{-4}, 5.25 \times 10^{-4}, 7.5 \times 10^{-4}, 7$
	$1.125 \times 10^{-3}, 1.5 \times 10^{-3}, 1.875 \times 10^{-3}, 2.25 \times 10^{-3}, 2.625 \times 10^{-3}$
$3(7.5 \times 10^{-6})$	$7.5 \times 10^{-5}, 1.5 \times 10^{-4}, 2.25 \times 10^{-4}, 3.75 \times 10^{-4}, 5.25 \times 10^{-4}, 7.5 \times 10^{-4}, 7$
	$1.125 \times 10^{-3}, 1.5 \times 10^{-3}, 1.875 \times 10^{-3}, 2.25 \times 10^{-3}, 2.625 \times 10^{-3}$

Complex	V _{max} (M S ⁻¹)	Std. Error	K _M (M)	Std. Error	$k_{\rm cat}$ (h ⁻¹)
1	1.02 x 10 ⁻⁶	2.22 x 10 ⁻⁷	4.01 x 10 ⁻⁴	3.00 x 10 ⁻⁵	734.0
2	9.43 x 10 ⁻⁷	4.25 x 10 ⁻⁸	4.14 x 10 ⁻⁴	1.52 x 10 ⁻⁵	450.0
3	7.46 x 10 ⁻⁷	9.23 x 10 ⁻⁸	3.98 x 10 ⁻⁴	2.56 x 10 ⁻⁵	358.0

Table ST13. Kinetic parameters for catalytic activities of complexes (1–3) on 3,5-DTBC

Table ST14. Kinetic parameters for the oxidation of 3,5-DTBC to 3,5-DTBQ catalyzed by different Cu^{II}, Ni^{II}, Mn^{II}, Ni^{II}–Mn^{II} and Cu^{II}–Mn^{II} complexes.^a

	Complexes	k _{cat} (h ⁻¹) in CH ₃ OH	k _{cat} (h ⁻¹) in CH ₃ CN	k _{cat} (h ⁻¹) in DMF	Refere nces
Cu ^{II} complexes	$[\mathrm{Cu}^{\mathrm{II}}_{2}(\mathrm{L}^{1})_{2}(\mathrm{NCO})_{2}]$	64.2	Not performed	Not performed	26a
	$[Cu^{II}_2(L^2)_2(NCO)_2] \cdot 2CH_3OH$	98.4	Not performed	Not performed	26a
	[Cu ^{II} L ³ (NCO)]	23.6	Not performed	Not performed	26b
	[Cu ^{II} (L ⁴)bpy]ClO ₄	83.5	Not performed	Not performed	26c
	[Cu ^{II} (L ⁴)phen]ClO ₄	73.5	Not performed	Not performed	26c
	$[Cu^{II}_{2}L^{5}_{4}(\mu\text{-cl})](ClO_{4})_{2}$	183.6	Not performed	Not performed	26d
	$[Cu^{II}_{4}(\mu_{3}\text{-}OH)_{2}(\mu_{2}\text{-}OH)_{2} L^{5}_{4}(\mu_{3}\text{-}ClO_{4})](ClO_{4})_{2}$	172.8	Not performed	Not performed	26d
	$[Cu^{II}_{2}(L^{6}H)_{2}(H_{2}O)_{2}(NO_{3})_{2}] (NO_{3})_{2}$	29600.0	Not performed	Not performed	26e
	[Cu ^{II} ₂ L ⁷ (OH)(H ₂ O)(NO ₃)] (NO ₃)	3310.0	Not performed	κ_{cat} (n ⁻¹) in DMF Not performed Not performed	26e

$[Cu^{II}_{2}L^{8}(H_{2}O)(NO_{3})](NO_{3})$	7200.0	Not	Not	26e
		performed	performed	
$[Cu^{II}_{2}L^{9}(H_{2}O)_{2}(NO_{3})](NO_{3})_{2}$	2350.0	Not	Not	26e
		performed	performed	
$[Cu^{II}_{2}L^{10}(N_{3})_{2}(H_{2}O)_{2}$	18000.0	21600.0	Not	26f
			performed	
$[Cu^{II}_{2}L^{11}(N_{3})_{2}(H_{2}O)_{2}]$	Not	10800.0	Not	26f
	performed		performed	
$[Cu^{II}_{2}L^{12}(N_{3})_{2}(H_{2}O)_{2}]$	Not	18000.0	Not	26f
	performed		performed	
$[Cu^{II}_{2}L^{13}(N_{3})_{2}(H_{2}O)_{2}]$	21600.0	72000.0	Not	26f
			performed	
$[Cu^{II}_{2}(HL^{14})(O_{2}CPh)(H_{2}O)]$ -	25.8	Not	Not	26g
PhCOatHaO		performed	performed	
$[\mathrm{Cu}^{\mathrm{II}}{}_{2}\mathrm{L}^{\mathrm{15}}{}_{2}]$	720.0	Not	Not	26h
		performed	performed	
$[Cu^{II}_{2}L^{16}(H_{2}O)_{4}](ClO_{4})_{4}\cdot 2H_{2}O$	63.0	Not	Not	30a
		performed	performed	
$[Cu^{II}_{2}(H_{2}L^{17})(ClO_{4})](ClO_{4})$	58.6	Not	Not	30a
		performed	performed	
$[Cu^{II}L^{18}{}_2] \cdot 4H_2O$	2796.0	Not	Not	26i
		performed	performed	
[Cu ^{II} L ¹⁹]	722.0	Not	Not	26j
		performed	performed	
$[Cu^{II}_4(L^{20}H)_2 L^{20}_2(H_2O)_2] (ClO_4)_2 \cdot 3H_2O$	113.0	Not	Not	26k
		performed	performed	
$[Cu^{II}_4(L^{20}H)_2 L^{20}_2(H_2O)_2]$	97.0	Not	Not	26k
$(ClO_4) \cdot (tp)_{0.5} \cdot 3H_2O$		performed	performed	
$[(Cu^{II}L^{21})_2(\mu_{1,1}\text{-}N_3)_2Cu(H_2O)]\cdot CH_3OH$	125.8	Not	Not	261
		performed	performed	
	1	1	1	

	$[(Cu^{II}L^{22})_2(\mu_{1,1}-N_3)_2Cu(H_2O)] \cdot CH_3OH$	118.9	Not	Not	261
			performed	performed	
	$[(Cu^{II}L^{23})_2(\mu_{1,1}-N_3)_2Cu(H_2O)]$ ·CH ₃ OH	114.7	Not	Not	261
			performed	performed	
Ni ^{II}	[Ni ^{II} ₂ (L ²⁴)(SCN) ₂ (CH ₃ COO)-(H ₂ O)]	863.9	Not	Not	27a
complexes			performed	performed	
	[Ni ^{II} ₂ (L ²⁵)(SCN) ₃ (CH ₃ OH) ₂]	161.1	Not performed	ed Performed	27a
	$[\mathbf{N}_{\mathrm{e}}^{\mathrm{e}}] (\mathbf{L}_{\mathrm{e}}^{24}) (\mathbf{S}_{\mathrm{e}}^{\mathrm{e}}) (\mathbf{L}_{\mathrm{e}}^{\mathrm{e}}) (\mathbf{C}_{\mathrm{e}}^{\mathrm{e}}) (\mathbf{L}_{\mathrm{e}}^{\mathrm{e}}) (\mathbf{L}_{$	154.0	Not	Not	27.
$ \begin{bmatrix} [(Cu^{II}L^{22})_{2}(\mu_{1,1}-N_{3})_{2}Cu(H_{2}O)] \cdot CH_{3}OH & 118.9 \\ [(Cu^{II}L^{23})_{2}(\mu_{1,1}-N_{3})_{2}Cu(H_{2}O)] \cdot CH_{3}OH & 114.7 \\ \hline \\ $	134.0	performed	performed	27a	
	[Ni ^{II} ₂ (L ²⁵)(SCN) CH ₃ COO) ₂]	303.7	Not	Not	27a
			performed	performed	
	$[Ni^{II}_{2}(L^{24})(N_{3})3(H_{2}O)_{2}]$	172.8	Not	Not	27a
			performed	performed	
	$[Ni^{II}_{2}(L^{25})(N_{3})3(H_{2}O)_{2}]$	264.1	Not	Not	27a
			performed	performed	
	[Ni ^{II} ₂ L ²⁴ ₂ (CH ₃ CN) ₄](ClO ₄) ₂ ·2CH ₃ CN	7.9	Not	Not	27a
			performed	performed	
	$[Ni^{II}_{3}(L^{25})_{2}(NCS)_{2}(H_{2}O)_{4}]$ ·H ₂ O	14.5	Not	Not	27a
			performed	performed	
	$[Ni^{II}_{2}(L^{26})(CH_{3}COO)_{2}(N(CN)_{2})]_{n}$	128.6	Not	Not	27a
			performed	performed	
	[Ni ^{II} ₂ (L ²⁷)(CH ₃ COO) ₂ (N(CN) ₂)]	275.0	Not	Not	27a
			performed	performed	
	[Ni ^{II} ₂ L ²⁸ ₂ (CH ₃ CN) ₄](ClO ₄) ₂ ·2CH ₃ CN	7.9	Not	Not	6e
			performed	performed	
	$[Ni_3(L^{29})_2(NCS)_2(H_2O)_4]$ ·H ₂ O	14.5	Not	Not	6e
			performed	performed	
	$[Ni^{II}_{2}(L^{30})_{2}(NCS)_{2}]$	Not	64.1	Not	27b
		performed		performed	

	$[Ni^{II}_{2}(L^{31})_{2}(NCS)_{2}]$	Not	51.1	Not	27b
		performed		performed	
	$[Ni^{II}_{2}(L^{32})_{2}(NCS)_{2}]$	Not	81.7	Not	27b
		performed		performed	
	$[Ni^{II}L^{33}(H_2O)_3]I_2 \cdot H_2O$	92.6	Not performed	Not performed	3d
		04.0			2.1
	$[N1^{II}L^{33}(H_2O)_3]Br_2 \cdot H_2O$	84.8	Not performed	Not performed	3d
	$[Ni^{II}_{2}(L^{34})_{2}(H_{2}O)_{4}](NO_{3})_{2}$	474	Not performed	Not performed	3d
	[Ni ^{II} ₅ (L ³⁵) ₂ (CH ₃ COO) ₆ (OH) ₂]·5.5 H ₂ O	477	Not performed	Not performed	3d
	[Ni ^{II} L ³³ (H ₂ O) ₃](NO ₃) ₂	52.6	Not performed	Not performed	3d
	[Ni ^{II} L ³⁶ (H ₂ O) ₃](NO ₃) ₂	129	Not performed	Not performed	3d
	$[Ni^{II}_{4}(L^{37})_{2}(H_{2}O)_{8}(\mu_{2}H_{2}O)_{2}](NO_{3})6(H_{2}O)$	Not performed	Not performed	12	27c
	[Ni ^{II} ₂ L ³⁸ (PhCOO)(H ₂ O) ₂]ClO ₄	167.4	Not performed	Not performed	27d
Mn ^{II} complexes	[Mn ^{II} (HL ³⁹)(H ₂ O) ₂ (CH ₃ CN)](ClO ₄) ₂	Not performed	Not performed	48.8	28a
	$[Mn^{II}(L^{40})_2(OH_2)_2]$	598.0	Not performed	Not performed	28b
	$[Mn^{II}(HL^{41})_2] \cdot 2ClO_4$	1038.0	Not performed	Not performed	28c
	$[Mn^{II}(HL^{41})(N(CN)_2)$	871.2	Not performed	Not performed	28c
	$[Mn^{II}(o-(NO_2) C_6H_4COO)_2(L^{42})(H_2O)]_n$	Not performed	177.0	Not performed	28d

	$[Mn^{II}_{4}L^{43}_{2}(\mu_{3}-Cl)_{2}Cl_{2}]$	2265.5	Not	Not	28e
			performed	performed	
	$[Mn^{II}_{4}L^{43}(\mu_{1,1,1}-N_{3})_{2}(N_{3})_{2}]$	2132.2	Not	Not	28e
			performed	performed	
Ni ^{II} -Mn ^{II}	$[(\mathrm{Ni}^{\mathrm{II}}\mathrm{L}^{44})_{2}\mathrm{Mn}^{\mathrm{II}}(\mathrm{NCS})_{2}]$	104.5	Not	Not	7e
complexes			performed	performed	
	$[(\mathrm{Ni}^{\mathrm{II}}\mathrm{L}^{44})_{2}\mathrm{Mn}^{\mathrm{II}}(\mathrm{NCO})_{2}]$	77.0	Not	Not	7e
			performed	performed	
	$[{Ni^{II}L^{44}(EtOH)}_2Mn^{II}(NO_2)_2] \cdot 2EtOH$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7e		
			performed	performed	
	[(Ni ^{II} L ⁴⁵) ₂ Mn ^{II} N ₃](ClO ₄)	768.0	Not	Not	7c
			performed	performed	
	$[(Ni^{II}L^{45})_2 Mn^{II}_2(N_3)_2(\mu_{1,1}-$	1985.0	Not	Not	7c
	N ₃) ₂ (CH ₃ OH) ₂]		performed	performed	
	$[{(Ni^{II}L^{45})_2Mn^{II}}_2(\mu_{1,3}-$	2309.0	Not	Not	7c
	N ₃)(H ₂ O)]·(CH ₃ OH),(ClO ₄) ₃		performed	performed	
	$[(Ni^{II}L^{45})_2 Mn^{II}_2(N_3)_2(\mu_{1,1}-$	935.0	Not	Not	7d
	N ₃) ₂ (CH ₃ OH) ₂]		performed	performed	
	$[(Ni^{II}L^{46})_2 Mn^{II}_2(N_3)_2(\mu_{1,1}-$	984.0	Not	Not	7g
	N ₃) ₂ (CH ₃ OH) ₂]		performed	performed	
	$[(Ni^{II}L^{46})_2 Mn^{II}_2(N_3)_2(\mu_{1,1}-$	2081.0	Not	Not	7g
	N ₃) ₂ (CH ₃ OH) ₂]		performed	performed	
	Complex 1	Not	734.0	Not	Present
		performed		performed	Study
Cu ^{II} -Mn ^{II}	$[(Cu^{II}L^{47}) Mn^{II}(PhCOO)(H_2O)]_2 \cdot (Cu$	Not	399.0	Not	10g
complexes	$L^{42})_2(ClO_4)_2$	performed		performed	
	$[(Cu^{II}L^{48})_2Mn^{II}(N_3)(H_2O)](ClO_4)\cdot H_2O$	1118.0	Not	Not	7b
			performed	performed	
	$[(Cu^{II}L^{49})_2 Mn^{II}(CH_3COO)_2]$	Not	139.0	Not	7f
		performed		performed	

$[(Cu^{II}L^{49})_2Mn^{II}(PhCOO)(H_2O)]Cl$	Not performed	439.0	Not performed	7f
[(Cu ^{II} L ⁴⁹) ₂ Mn ^{II} ((p- OH)PhCOO)(H ₂ O)]ClO ₄	Not performed	348.0	Not performedNot performedNot performedNot performedNot performedNot performedNot performedNot performedNot performedNot 	7f
$[(Cu^{II}L^{49})_2Mn^{II}(HCOO)(H_2O)]ClO_4$	Not performed	730.0	Not performed	7f
$ \{ [(Cu^{II}L^{49})_2Mn^{II}(nic)(H_2O)_2](ClO_4)(0.5H_2O) \}_n $	Not performed	1075.0	Not performed	3e
$[(Cu^{II}L^{49})_2Mn^{II}(nic)_2] \cdot 2CH_3OH$	Not performed	683.0	Not performed	3e
$[(Cu^{II}L^{50})_2 Mn^{II}_3(PhCOO)_6]$	Not performed	595.0	Not performed	12c
$[(Cu^{II}L^{50})_2Mn^{II}(CH_3COO)_2]$	Not performed	39.9	Not performed	12c
$ \{ [(Cu^{II}L^{50})_2Mn^{II}(PhCH_2CO_2)_2] \cdot 2CH_3CN \} $	Not performed	204.5	Not performed	12c
Complex 2	Not performed	450.0	Not performed	Present Study
Complex 3	Not performed	358.0	Not performed	Present Study

^aWhere HL¹ = 2-dimethylamino-ethylamino)-methyl]-phenol, HL² = 2-[(2-diethylaminoethylamino)-methyl]-phenol, HL³ = 2-methoxy-6-(8-iminoquinolinylmethyl)phenol, HL⁴ = 2-[(3-methylamino-propylimino)-methyl]phenol, L⁵ = 2-aminoethylpyridine, HL⁶ = 2-formyl-4methyl-6-(4-(aminomethyl)-piperidine)-iminomethyl-phenol, HL⁷ = 2,6-bis(2-amino-2-methyl-1propanol)-iminomethyl-4-methyl-phenol, HL⁹ = 2,6-bis(2-aminoethylpyridine)-iminomethyl-4methyl-phenol, HL⁸ = 2-formyl-4-methyl-6-(aminobenzyl)-iminomethyl-phenol, H₂L⁹ = condensation product of 4-methyl-2,6-diformylphenol with 1,3-diaminopropane, H₂L¹⁰ = condensation product of 4-methyl-2,6-diformylphenol with 1,2-diaminopropane, H₂L¹² = condensation product of 4-methyl-2,6-diformylphenol with 1,2-diaminopropane, H₂L¹³ = condensation product of 4-methyl-2,6-diformylphenol with 1,2-diaminoyphenol, H₂L¹³ = condensation product of 4-methyl-2,6-diformylphenol with 1,2-diaminopropane, H₂L¹⁴ = condensation product of 4-methyl-2,6-diformylphenol with 1,2-diaminopropane, H₂L¹⁵ = condensation product of 4-methyl-2,6-diformylphenol with 1,2-diaminopropane, H₂L¹⁴ = condensation product of 4-methyl-2,6-diformylphenol with 1,2-diaminopropane, H₂L¹⁵ = condensation product of 4-methyl-2,6-diformylphenol with 1,2-diaminopropane, H₂L¹⁵ =

(ethane-1,2-divldi-o-phenylene)-bis(pyridine-2-carboxamidide), $L^{16} =$ 2.8-dimethyl-5.11bis(pyridin-2-ethyl)-1,4,5,6,7,10,11,12-octahydroimidazo [4,5-h]imidazo[4,5c][1,6]-diazecine, $H_2L^{17} = N_N'$ -bis{(2-hydroxy-3-formyl-5-methylbenzyl)(dimethyl)}-ethylenediamine, $L^{18} = 3$ methoxy-2-oxo-benzaldehyde, H₂L¹⁹ =N,N'-bis(2-hydroxy-3,5-di tertiarybutylbenzyl)homopiperazine, $H_2L^{20} = 2$ -[(2-hydroxy ethylimino)-propylimino)-methyl]-6methoxy-phenol, $H_{2}L^{21}$ = N,N-bis(3,5-dimethyl-2-hydroxybenzyl)-N',N'-dimethyl-1,3diaminopropane "H₂L²² N,N-bis(3,5-dimethyl-2-hydroxybenzyl)-N',N'-dimethyl-1,2-= N,N-bis(3,5-dimethyl-2-hydroxybenzyl)-N',N'-diethyl-1,2diaminoethane, $H_{2}L^{23}$ = diaminoethane, $HL^{24}=2,6$ -bis(R₂-iminomethyl)-4-R₁-phenol; R₁ = tert-butyl, R₂ = N,Ndimethylethylene, HL²⁵=2,6-bis(R₂-iminomethyl)-4-R₁-phenol; R_1 = tert-butyl, R_2 = 2-(N-ethyl) pyridine, $HL^{26}=2,6$ -bis(R₂-iminomethyl)-4-R₁-phenol; R₁ = methyl, R₂ = N,N-dimethylethylene, $HL^{27}=2,6$ -bis(R₂-iminomethyl)-4-R₁-phenol; R₁ = methyl, R₂ = 2-(N-ethyl) pyridine, deen = 2-(diethylamino) ethylamine, dmpn = 3-(dimethylamino)-1-propylamine, and modaH= diacetyl HL²⁹=2-[1-(2monoxime. HL²⁸=2-[1-(3-methylamino-propylamino)-ethyl]-phenol, dimethylamino-ethylamino)-ethyl]-phenol, HL³⁰=2-[1-(3-dimethylamino-propylamino)-ethyl]phenol, $HL^{31} = 2$ -[(2-piperazin-1-ylethylimino)methyl]phenol, $HL^{32} = 2$ -formyl-4-methyl-6-(1-(2-aminomethyl)piperidine)-iminomethylphenol, HL³³= 4-methyl-2,6-bis(1-(2aminomethyl)piperidine)-iminomethylphenol, HL³⁴=2-[(2-piperazin-1-ylethylimino)methyl]-4chlorophenol, HL³⁵= 2,6 diformyl-4-isopropyl phenol, HL³⁶= 2-[(3-methylamino-propylamino)methyl]-4-nitrophenol, $HL^{37}=2-[(3-methylamino-propylamino)-methyl]-4-phenol, <math>L^{39} = 1,3-$ Bis(6'-methyl-2-pyridylimino)isoindoline, $L^{40}=$ 3-methoxy-4-hydroxy-benzaldehyde, $HL^{41}=$ 4tert-butyl-2,6-bis-[(2-pyridin-2-yl-ethylimino)-methyl]-phenol, L^{42} = Pyrazine, H_2L^{43} =N,N'dimethyl-N,N'-bis(2-hydroxy-3-methoxy-5-methylbenzyl)ethylenediamine, $H_2L^{44} = N.N'$ bis(salicylidene)-1,3-propanediamine, $H_{2}L^{45}$ = N-α-methylsalicylidene-N'-3methoxysalicylidene-1,3-propanediamine, $H_2L^{46} = N \cdot \alpha$ -methylsalicylidene-N'-salicylidene-1,3propanediamine H_2L^{47} = N-salicylidene-N'-3-methoxysalicylidene-1,2-ethylenediamine, H_2L^{48} = $H_{2}L^{49}$ N-(2-Hydroxyacetophenylidene)-N'-salicylidene-1,3-propanediamine, =N,N'-bis(α methylsalicylidene)-1,3-propanediamine, $H_2L^{50} = N,N'-bis(2-hydroxynaphthyl-methylidene)-$ 1,3-propanediamine.