Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

## BaI<sub>3</sub>O<sub>9</sub>OH: A new alkaline-earth metal hydroxy iodates with two groups

Wenjuan Ma,<sup>a,b</sup> Jianlong Huang,<sup>a,b</sup> Bin Dai<sup>a,b</sup> and Feng Yu\*a,b

- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P.R. China.
- b. Carbon Neutralization and Environmental Catalytic Technology Laboratory,

Bingtuan Industrial Technology Research Institute, Shihezi University, Shihezi

832003, P.R. China. \*Corresponding author: <u>yufeng05@mail.ipc.ac.cn</u>

## **Supporting Information**

**Table S1.** Atomic coordinates (×10<sup>4</sup>), equivalent isotropic displacement parameters (Å<sup>2</sup> × 10<sup>3</sup>), and bond valence sum (BVS) calculations for BaI<sub>3</sub>O<sub>9</sub>H.  $U_{eq}$  is defined as one-third of the trace of the orthogonalized  $U_{ij}$  tensor.

| Atom   | x/a        | <i>y/b</i> | z/c      | U <sub>eq</sub> | BVS  |
|--------|------------|------------|----------|-----------------|------|
| Ba (1) | 6525(1)    | 2036(1)    | 5010(1)  | 13(1)           | 2.13 |
| I (1)  | 9371(1)    | 2082(1)    | 7706(1)  | 12(1)           | 5.47 |
| I (2)  | 4719(1)    | 105(1)     | 7691(1)  | 10(1)           | 5.23 |
| I (3)  | 8211(1)    | 6705(1)    | 4675(1)  | 11(1)           | 5.47 |
| O (1)  | 11640(7)   | 2944(7)    | 7635(5)  | 27(1)           | 1.78 |
| O (2)  | 9865(6)    | 3245(6)    | 4521(4)  | 22(1)           | 1.92 |
| O (3)  | 6804(6)    | 5554(6)    | 5420(4)  | 20(1)           | 2.13 |
| O (4)  | 4460(6)    | 446(5)     | 3471(4)  | 15(1)           | 2.10 |
| O (5)  | 8428(6)    | 4023(5)    | 8032(4)  | 22(1)           | 1.96 |
| O (6)  | 6627(6)    | 1046(5)    | 8300(4)  | 15(1)           | 2.20 |
| O (7)  | 4932(6)    | -1882(5)   | 8304(4)  | 15(1)           | 2.06 |
| O (8)  | 7310(6)    | 8717(6)    | 4874(4)  | 25(1)           | 2.33 |
| O (9)  | 9041(6)    | 2163(6)    | 6420(4)  | 24(1)           | 2.24 |
| H (1)  | 12160(100) | 3260(100)  | 8140(70) | 29              |      |

| Table S2. B | ond lengths | (Å) and | angles (°) | ) for I | BaI <sub>3</sub> O | θH |
|-------------|-------------|---------|------------|---------|--------------------|----|
|-------------|-------------|---------|------------|---------|--------------------|----|

| Ba (1)-O (2)             | 2.882(5)   | I (1)-O (1)              | 1.902(5)   |
|--------------------------|------------|--------------------------|------------|
| Ba (1)-O (3)             | 2.876(5)   | I (1)-O (5)              | 1.784(4)   |
| Ba (1)-O (3) #1          | 3.259(5)   | I (1)-O (6)              | 2.466(5)   |
| Ba (1)-O (4) #2          | 3.012(5)   | I (1)-O (9)              | 1.781(5)   |
| Ba (1)-O (4)             | 2.894(4)   | I (2)-O (4) #2           | 1.808(5)   |
| Ba (1)-O (5) #3          | 3.278(6)   | I (2)-O (6)              | 1.830(4)   |
| Ba (1)-O (6) #3          | 2.819(5)   | I (2)-O (7)              | 1.804(4)   |
| Ba (1)-O (7) #4          | 2.774(5)   | I (3)-O (2) #6           | 1.819(5)   |
| Ba (1)-O (8) #1          | 3.055(5)   | I (3)-O (3)              | 1.791(5)   |
| Ba (1)-O (8) #5          | 2.733(5)   | I (3)-O (8)              | 1.782(5)   |
| Ba (1)-O (9)             | 2.692(5)   |                          |            |
| O (2)-Ba (1)-O (3) #1    | 118.42(13) | O (7) #4-Ba (1)-O (8) #1 | 65.02(14)  |
| O (2)-Ba (1)-O (4)       | 116.76(14) | O (8) #5-Ba (1)-O (2)    | 95.93(15)  |
| O (2)-Ba (1)-O (4) #2    | 130.29(13) | O (8) #5-Ba (1)-O (3) #1 | 137.75(14) |
| O (2)-Ba (1)-O (5) #3    | 56.18(13)  | O (8) #5-Ba (1)-O (3)    | 161.65(15) |
| O (2)-Ba (1)-O (8) #1    | 166.36(14) | O (8) #1-Ba (1)-O (3) #1 | 50.00(12)  |
| O (3)-Ba (1)-O (2)       | 69.97(14)  | O (8) #5-Ba (1)-O (4)    | 68.90(14)  |
| O (3)-Ba (1)-O (3) #1    | 60.56(15)  | O (8) #5-Ba (1)-O (4) #2 | 58.17(15)  |
| O (3)-Ba (1)-O (4)       | 127.44(13) | O (8) #1-Ba (1)-O (5) #3 | 118.30(13) |
| O (3)-Ba (1)-O (4) #2    | 121.85(14) | O (8) #5-Ba (1)-O (5) #3 | 65.19(15)  |
| O (3)-Ba (1)-O (5) #3    | 112.55(13) | O (8) #5-Ba (1)-O (6) #3 | 117.12(16) |
| O (3) #1-Ba (1)-O (5) #3 | 112.86(12) | O (8) #5-Ba (1)-O (7) #4 | 117.54(15) |
| O (3)-Ba (1)-O (8) #1    | 104.31(13) | O (8) #5-Ba (1)-O (8) #1 | 91.92(14)  |
| O (4) #2-Ba (1)-O (3) #1 | 106.83(12) | O (9)-Ba (1)-O (2)       | 61.62(13)  |
| O (4)-Ba (1)-O (3) #1    | 73.68(12)  | O (9)-Ba (1)-O (3)       | 77.08(14)  |

| O (4)-Ba (1)-O (4) #2   93.98(13)   O (9)-Ba (1)-O (3) #1   130.70(14)     O (4)-Ba (1)-O (5) #3   62.14(13)   O (9)-Ba (1)-O (4) #2   73.94(14)     O (4) #2-Ba (1)-O (5) #3   123.29(12)   O (9)-Ba (1)-O (4) #2   73.94(14)     O (4) #2-Ba (1)-O (8) #1   63.34(13)   O (9)-Ba (1)-O (5) #3   105.60(14)     O (4) #2-Ba (1)-O (8) #1   56.16(15)   O (9)-Ba (1)-O (6) #3   122.33(14)     O (6) #3-Ba (1)-O (3) #1   65.19(13)   O (9)-Ba (1)-O (7) #4   72.28(15)     O (6) #3-Ba (1)-O (3) #1   65.19(13)   O (9)-Ba (1)-O (8) #1   130.31(16)     O (6) #3-Ba (1)-O (3) #1   65.19(13)   O (6) #3-Ba (1)-O (8) #1   130.31(16)     O (6) #3-Ba (1)-O (4) #2   163.61(13)   O (5)-F (1)-O (8)   80.6(2)     O (6) #3-Ba (1)-O (4) #2   163.61(13)   O (5)-F (1)-O (1)   95.3(2)     O (6) #3-Ba (1)-O (8) #1   102.63(14)   O (9)-F (1)-O (6)   80.6(2)     O (7) #4-Ba (1)-O (8) #1   102.63(14)   O (9)-F (1)-O (6)   104.9(2)     O (7) #4-Ba (1)-O (3) #1   67.31(13)   O (9)-F (1)-O (6)   104.9(2)     O (7) #4-Ba (1)-O (3) #1                                                                                                      |                          |            |                       |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------|-----------------------|------------|
| O (4)-Ba (1)-O (5) #3   62.14(13)   O (9)-Ba (1)-O (4)   154.72(14)     O (4) #2-Ba (1)-O (5) #3   123.29(12)   O (9)-Ba (1)-O (4) #2   73.94(14)     O (4) #2-Ba (1)-O (8) #1   63.34(13)   O (9)-Ba (1)-O (5) #3   105.60(14)     O (4) #2-Ba (1)-O (8) #1   56.16(15)   O (9)-Ba (1)-O (6) #3   122.33(14)     O (6) #3-Ba (1)-O (2)   63.83(13)   O (9)-Ba (1)-O (7) #4   72.28(15)     O (6) #3-Ba (1)-O (3) #1   65.19(13)   O (9)-Ba (1)-O (8) #1   130.31(16)     O (6) #3-Ba (1)-O (3) #1   65.19(13)   O (6) #3-Ba (1)-O (3)   68.08(14)   O (6) #3-Ba (1)-O (3)   68.08(14)     O (6) #3-Ba (1)-O (4)   70.28(13)   O (1)-I (1)-O (6)   163.6(2)     O (6) #3-Ba (1)-O (4) #2   163.61(13)   O (5)-I (1)-O (1)   95.3(2)     O (6) #3-Ba (1)-O (5) #3   53.97(12)   O (5)-I (1)-O (6)   80.6(2)     O (6) #3-Ba (1)-O (5) #3   53.97(12)   O (9)-I (1)-O (1)   91.4(2)     O (7) #4-Ba (1)-O (3) #1   67.31(13)   O (9)-I (1)-O (6)   101.1(2)     O (7) #4-Ba (1)-O (3) #1   67.31(13)   O (9)-I (1)-O (6)   101.1(2)                                                                                                                 | O (4)-Ba (1)-O (4) #2    | 93.98(13)  | O (9)-Ba (1)-O (3) #1 | 130.70(14) |
| O (4) #2-Ba (1)-O (5) #3123.29(12)O (9)-Ba (1)-O (4) #273.94(14)O (4) #2-Ba (1)-O (8) #163.34(13)O (9)-Ba (1)-O (5) #3105.60(14)O (4)-Ba (1)-O (8) #156.16(15)O (9)-Ba (1)-O (6) #3122.33(14)O (6) #3-Ba (1)-O (2)63.83(13)O (9)-Ba (1)-O (7) #472.28(15)O (6) #3-Ba (1)-O (3) #165.19(13)O (9)-Ba (1)-O (8) #1130.31(16)O (6) #3-Ba (1)-O (3) #168.08(14)O (6) #3-Ba (1)-O (3)68.08(14)O (6) #3-Ba (1)-O (3) #168.08(14)O (6) #3-Ba (1)-O (3)68.08(14)O (6) #3-Ba (1)-O (4) #2163.61(13)O (5)-1 (1)-O (6)163.6(2)O (6) #3-Ba (1)-O (5) #353.97(12)O (5)-1 (1)-O (6)80.6(2)O (6) #3-Ba (1)-O (5) #353.97(12)O (5)-1 (1)-O (6)91.4(2)O (7) #4-Ba (1)-O (5) #3120.08(14)O (9)-1 (1)-O (5)100.3(2)O (7) #4-Ba (1)-O (3) #167.31(13)O (9)-1 (1)-O (5)101.1(2)O (7) #4-Ba (1)-O (3) #163.92(14)O (4) #2-1 (2)-O (6)101.1(2)O (7) #4-Ba (1)-O (4) #259.64(12)O (7)-1 (2)-O (4) #299.9(2)O (7) #4-Ba (1)-O (4) #259.64(12)O (3)-1 (3)-O (2) #699.8(2)O (7) #4-Ba (1)-O (5) #3176.07(12)O (3)-1 (3)-O (2) #699.8(2)O (7) #4-Ba (1)-O (6) #3124.12(13)O (8)-1 (3)-O (2) #6101.8(2)O (9)-Ba (1)-O (8) #585.95(16)O (8)-1 (3)-O (3)96.9(2)                   | O (4)-Ba (1)-O (5) #3    | 62.14(13)  | O (9)-Ba (1)-O (4)    | 154.72(14) |
| O (4) #2-Ba (1)-O (8) #163.34(13)O (9)-Ba (1)-O (5) #3105.60(14)O (4)-Ba (1)-O (8) #156.16(15)O (9)-Ba (1)-O (6) #3122.33(14)O (6) #3-Ba (1)-O (2)63.83(13)O (9)-Ba (1)-O (7) #472.28(15)O (6) #3-Ba (1)-O (3) #165.19(13)O (9)-Ba (1)-O (8) #1130.31(16)O (6) #3-Ba (1)-O (3) #165.19(13)O (9)-Ba (1)-O (8) #1130.31(16)O (6) #3-Ba (1)-O (3) #168.08(14)O (6) #3-Ba (1)-O (3)68.08(14)O (6) #3-Ba (1)-O (4) #2163.61(13)O (1)-I (1)-O (6)80.6(2)O (6) #3-Ba (1)-O (4) #2163.61(13)O (5)-I (1)-O (1)95.3(2)O (6) #3-Ba (1)-O (8) #1102.63(14)O (9)-I (1)-O (6)80.6(2)O (6) #3-Ba (1)-O (8) #1102.63(14)O (9)-I (1)-O (1)91.4(2)O (7) #4-Ba (1)-O (3) #167.31(13)O (9)-I (1)-O (6)104.9(2)O (7) #4-Ba (1)-O (3) #163.92(14)O (4) #2-I (2)-O (6)101.1(2)O (7) #4-Ba (1)-O (4) #259.64(12)O (7)-I (2)-O (4) #299.9(2)O (7) #4-Ba (1)-O (4) #259.64(12)O (3)-I (3)-O (2) #699.8(2)O (7) #4-Ba (1)-O (5) #3176.07(12)O (3)-I (3)-O (2) #699.8(2)O (7) #4-Ba (1)-O (6) #3124.12(13)O (8)-I (3)-O (2) #6101.8(2)O (9)-Ba (1)-O (8) #585.95(16)O (8)-I (3)-O (3)96.9(2)                                                                                  | O (4) #2-Ba (1)-O (5) #3 | 123.29(12) | O (9)-Ba (1)-O (4) #2 | 73.94(14)  |
| O (4)-Ba (1)-O (8) #156.16(15)O (9)-Ba (1)-O (6) #3122.33(14)O (6) #3-Ba (1)-O (2)63.83(13)O (9)-Ba (1)-O (7) #472.28(15)O (6) #3-Ba (1)-O (3) #165.19(13)O (9)-Ba (1)-O (8) #1130.31(16)O (6) #3-Ba (1)-O (3)68.08(14)O (6) #3-Ba (1)-O (8) #1130.31(16)O (6) #3-Ba (1)-O (3)68.08(14)O (6) #3-Ba (1)-O (3)68.08(14)O (6) #3-Ba (1)-O (4)70.28(13)O (1)-I (1)-O (6)163.6(2)O (6) #3-Ba (1)-O (4) #2163.61(13)O (5)-I (1)-O (1)95.3(2)O (6) #3-Ba (1)-O (5) #353.97(12)O (5)-I (1)-O (6)80.6(2)O (6) #3-Ba (1)-O (8) #1102.63(14)O (9)-I (1)-O (5)100.3(2)O (6) #3-Ba (1)-O (8) #1102.63(14)O (9)-I (1)-O (5)100.3(2)O (7) #4-Ba (1)-O (3) #167.31(13)O (9)-I (1)-O (5)100.3(2)O (7) #4-Ba (1)-O (3) #163.92(14)O (9)-I (1)-O (6)101.1(2)O (7) #4-Ba (1)-O (4) #259.64(12)O (7)-I (2)-O (4) #299.9(2)O (7) #4-Ba (1)-O (4) #259.64(12)O (3)-I (3)-O (2) #699.8(2)O (7) #4-Ba (1)-O (5) #3176.07(12)O (3)-I (3)-O (2) #699.8(2)O (7) #4-Ba (1)-O (6) #3124.12(13)O (8)-I (3)-O (2) #6101.8(2)O (9)-Ba (1)-O (8) #585.95(16)O (8)-I (3)-O (3)96.9(2)                                                                                                | O (4) #2-Ba (1)-O (8) #1 | 63.34(13)  | O (9)-Ba (1)-O (5) #3 | 105.60(14) |
| O (6) #3-Ba (1)-O (2)   63.83(13)   O (9)-Ba (1)-O (7) #4   72.28(15)     O (6) #3-Ba (1)-O (3) #1   65.19(13)   O (9)-Ba (1)-O (8) #1   130.31(16)     O (6) #3-Ba (1)-O (3)   68.08(14)   O (6) #3-Ba (1)-O (3)   68.08(14)     O (6) #3-Ba (1)-O (3)   70.28(13)   O (1)-I (1)-O (6)   68.08(14)     O (6) #3-Ba (1)-O (4) #2   163.61(13)   O (5)-I (1)-O (1)   95.3(2)     O (6) #3-Ba (1)-O (4) #2   163.61(13)   O (5)-I (1)-O (1)   95.3(2)     O (6) #3-Ba (1)-O (8) #1   102.63(14)   O (9)-I (1)-O (6)   80.6(2)     O (7) #4-Ba (1)-O (8) #1   102.63(14)   O (9)-I (1)-O (6)   100.3(2)     O (7) #4-Ba (1)-O (3) #1   67.31 (13)   O (9)-I (1)-O (6)   104.9(2)     O (7) #4-Ba (1)-O (3) #1   63.92(14)   O (9)-I (1)-O (6)   101.1(2)     O (7) #4-Ba (1)-O (4) #2   59.64(12)   O (7)-I (2)-O (4) #2   99.9(2)     O (7) #4-Ba (1)-O (4) #2   59.64(12)   O (7)-I (2)-O (4) #2   99.8(2)     O (7) #4-Ba (1)-O (5) #3   176.07(12)   O (3)-I (3)-O (2) #6   99.8(2)     O (7) #4-Ba (1)-O (6) #3   124.12(13) <td< td=""><td>O (4)-Ba (1)-O (8) #1</td><td>56.16(15)</td><td>O (9)-Ba (1)-O (6) #3</td><td>122.33(14)</td></td<> | O (4)-Ba (1)-O (8) #1    | 56.16(15)  | O (9)-Ba (1)-O (6) #3 | 122.33(14) |
| O (6) #3-Ba (1)-O (3) #165.19(13)O (9)-Ba (1)-O (8) #1130.31(16)O (6) #3-Ba (1)-O (3)68.08(14)O (6) #3-Ba (1)-O (3)68.08(14)O (6) #3-Ba (1)-O (4)70.28(13)O (1)-I (1)-O (6)163.6(2)O (6) #3-Ba (1)-O (4) #2163.61(13)O (5)-I (1)-O (1)95.3(2)O (6) #3-Ba (1)-O (5) #353.97(12)O (5)-I (1)-O (6)80.6(2)O (6) #3-Ba (1)-O (8) #1102.63(14)O (9)-I (1)-O (1)91.4(2)O (7) #4-Ba (1)-O (8) #1102.63(14)O (9)-I (1)-O (5)100.3(2)O (7) #4-Ba (1)-O (3) #167.31(13)O (9)-I (1)-O (6)104.9(2)O (7) #4-Ba (1)-O (3) #163.92(14)O (4) #2-I (2)-O (6)101.1(2)O (7) #4-Ba (1)-O (4) #259.64(12)O (7)-I (2)-O (4) #299.9(2)O (7) #4-Ba (1)-O (4) #259.64(12)O (3)-I (3)-O (2) #699.8(2)O (7) #4-Ba (1)-O (6) #3124.12(13)O (8)-I (3)-O (2) #6101.8(2)O (7) #4-Ba (1)-O (6) #3124.12(13)O (8)-I (3)-O (3)96.9(2)                                                                                                                                                                                                                                                                                                                                                | O (6) #3-Ba (1)-O (2)    | 63.83(13)  | O (9)-Ba (1)-O (7) #4 | 72.28(15)  |
| O (6) #3-Ba (1)-O (3)68.08(14)O (6) #3-Ba (1)-O (3)68.08(14)O (6) #3-Ba (1)-O (4)70.28(13)O (1)-1 (1)-O (6)163.6(2)O (6) #3-Ba (1)-O (4) #2163.61(13)O (5)-I (1)-O (1)95.3(2)O (6) #3-Ba (1)-O (5) #353.97(12)O (5)-I (1)-O (6)80.6(2)O (6) #3-Ba (1)-O (5) #3102.63(14)O (9)-I (1)-O (1)91.4(2)O (7) #4-Ba (1)-O (2)120.08(14)O (9)-I (1)-O (5)100.3(2)O (7) #4-Ba (1)-O (3) #167.31(13)O (9)-I (1)-O (6)104.9(2)O (7) #4-Ba (1)-O (3)63.92(14)O (4) #2-I (2)-O (6)101.1(2)O (7) #4-Ba (1)-O (4) #259.64(12)O (7)-I (2)-O (4) #299.9(2)O (7) #4-Ba (1)-O (4) #3176.07(12)O (3)-I (3)-O (2) #699.8(2)O (7) #4-Ba (1)-O (6) #3124.12(13)O (8)-I (3)-O (2) #6101.8(2)O (9)-Ba (1)-O (8) #585.95(16)O (8)-I (3)-O (3)96.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                         | O (6) #3-Ba (1)-O (3) #1 | 65.19(13)  | O (9)-Ba (1)-O (8) #1 | 130.31(16) |
| O (6) #3-Ba (1)-O (4)70.28(13)O (1)-I (1)-O (6)163.6(2)O (6) #3-Ba (1)-O (4) #2163.61(13)O (5)-I (1)-O (1)95.3(2)O (6) #3-Ba (1)-O (5) #353.97(12)O (5)-I (1)-O (6)80.6(2)O (6) #3-Ba (1)-O (8) #1102.63(14)O (9)-I (1)-O (1)91.4(2)O (7) #4-Ba (1)-O (2)120.08(14)O (9)-I (1)-O (5)100.3(2)O (7) #4-Ba (1)-O (3) #167.31(13)O (9)-I (1)-O (6)104.9(2)O (7) #4-Ba (1)-O (3)63.92(14)O (7)-I (2)-O (6)101.1(2)O (7) #4-Ba (1)-O (4) #259.64(12)O (7)-I (2)-O (4) #299.9(2)O (7) #4-Ba (1)-O (5) #3176.07(12)O (3)-I (3)-O (2) #699.8(2)O (7) #4-Ba (1)-O (6) #3124.12(13)O (8)-I (3)-O (2) #6101.8(2)O (9)-Ba (1)-O (8) #585.95(16)O (8)-I (3)-O (3)96.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O (6) #3-Ba (1)-O (3)    | 68.08(14)  | O (6) #3-Ba (1)-O (3) | 68.08(14)  |
| O (6) #3-Ba (1)-O (4) #2163.61(13)O (5)-I (1)-O (1)95.3(2)O (6) #3-Ba (1)-O (5) #353.97(12)O (5)-I (1)-O (6)80.6(2)O (6) #3-Ba (1)-O (8) #1102.63(14)O (9)-I (1)-O (1)91.4(2)O (7) #4-Ba (1)-O (2)120.08(14)O (9)-I (1)-O (5)100.3(2)O (7) #4-Ba (1)-O (3) #167.31(13)O (9)-I (1)-O (6)104.9(2)O (7) #4-Ba (1)-O (3)63.92(14)O (4) #2-I (2)-O (6)101.1(2)O (7) #4-Ba (1)-O (4) #259.64(12)O (7)-I (2)-O (4) #299.9(2)O (7) #4-Ba (1)-O (4)121.13(14)O (7)-I (2)-O (6)95.4(2)O (7) #4-Ba (1)-O (5) #3176.07(12)O (3)-I (3)-O (2) #699.8(2)O (7) #4-Ba (1)-O (6) #3124.12(13)O (8)-I (3)-O (3)96.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O (6) #3-Ba (1)-O (4)    | 70.28(13)  | O (1)-I (1)-O (6)     | 163.6(2)   |
| O (6) #3-Ba (1)-O (5) #353.97(12)O (5)-I (1)-O (6)80.6(2)O (6) #3-Ba (1)-O (8) #1102.63(14)O (9)-I (1)-O (1)91.4(2)O (7) #4-Ba (1)-O (2)120.08(14)O (9)-I (1)-O (5)100.3(2)O (7) #4-Ba (1)-O (3) #167.31(13)O (9)-I (1)-O (6)104.9(2)O (7) #4-Ba (1)-O (3)63.92(14)O (4) #2-I (2)-O (6)101.1(2)O (7) #4-Ba (1)-O (4) #259.64(12)O (7)-I (2)-O (4) #299.9(2)O (7) #4-Ba (1)-O (4)121.13(14)O (7)-I (2)-O (6)95.4(2)O (7) #4-Ba (1)-O (5) #3176.07(12)O (3)-I (3)-O (2) #699.8(2)O (7) #4-Ba (1)-O (6) #3124.12(13)O (8)-I (3)-O (2) #6101.8(2)O (9)-Ba (1)-O (8) #585.95(16)O (8)-I (3)-O (3)96.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O (6) #3-Ba (1)-O (4) #2 | 163.61(13) | O (5)-I (1)-O (1)     | 95.3(2)    |
| O (6) #3-Ba (1)-O (8) #1102.63(14)O (9)-I (1)-O (1)91.4(2)O (7) #4-Ba (1)-O (2)120.08(14)O (9)-I (1)-O (5)100.3(2)O (7) #4-Ba (1)-O (3) #167.31(13)O (9)-I (1)-O (6)104.9(2)O (7) #4-Ba (1)-O (3)63.92(14)O (4) #2-I (2)-O (6)101.1(2)O (7) #4-Ba (1)-O (4) #259.64(12)O (7)-I (2)-O (4) #299.9(2)O (7) #4-Ba (1)-O (4) #259.64(12)O (7)-I (2)-O (6)95.4(2)O (7) #4-Ba (1)-O (4)121.13(14)O (7)-I (2)-O (6)95.4(2)O (7) #4-Ba (1)-O (5) #3176.07(12)O (3)-I (3)-O (2) #699.8(2)O (7) #4-Ba (1)-O (6) #3124.12(13)O (8)-I (3)-O (2) #6101.8(2)O (9)-Ba (1)-O (8) #585.95(16)O (8)-I (3)-O (3)96.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O (6) #3-Ba (1)-O (5) #3 | 53.97(12)  | O (5)-I (1)-O (6)     | 80.6(2)    |
| O (7) #4-Ba (1)-O (2)120.08(14)O (9)-I (1)-O (5)100.3(2)O (7) #4-Ba (1)-O (3) #167.31(13)O (9)-I (1)-O (6)104.9(2)O (7) #4-Ba (1)-O (3)63.92(14)O (4) #2-I (2)-O (6)101.1(2)O (7) #4-Ba (1)-O (4) #259.64(12)O (7)-I (2)-O (4) #299.9(2)O (7) #4-Ba (1)-O (4)121.13(14)O (7)-I (2)-O (6)95.4(2)O (7) #4-Ba (1)-O (5) #3176.07(12)O (3)-I (3)-O (2) #699.8(2)O (7) #4-Ba (1)-O (6) #3124.12(13)O (8)-I (3)-O (2) #6101.8(2)O (9)-Ba (1)-O (8) #585.95(16)O (8)-I (3)-O (3)96.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O (6) #3-Ba (1)-O (8) #1 | 102.63(14) | O (9)-I (1)-O (1)     | 91.4(2)    |
| O (7) #4-Ba (1)-O (3) #167.31(13)O (9)-I (1)-O (6)104.9(2)O (7) #4-Ba (1)-O (3)63.92(14)O (4) #2-I (2)-O (6)101.1(2)O (7) #4-Ba (1)-O (4) #259.64(12)O (7)-I (2)-O (4) #299.9(2)O (7) #4-Ba (1)-O (4)121.13(14)O (7)-I (2)-O (6)95.4(2)O (7) #4-Ba (1)-O (5) #3176.07(12)O (3)-I (3)-O (2) #699.8(2)O (7) #4-Ba (1)-O (6) #3124.12(13)O (8)-I (3)-O (2) #6101.8(2)O (9)-Ba (1)-O (8) #585.95(16)O (8)-I (3)-O (3)96.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | O (7) #4-Ba (1)-O (2)    | 120.08(14) | O (9)-I (1)-O (5)     | 100.3(2)   |
| O (7) #4-Ba (1)-O (3)63.92(14)O (4) #2-I (2)-O (6)101.1(2)O (7) #4-Ba (1)-O (4) #259.64(12)O (7)-I (2)-O (4) #299.9(2)O (7) #4-Ba (1)-O (4)121.13(14)O (7)-I (2)-O (6)95.4(2)O (7) #4-Ba (1)-O (5) #3176.07(12)O (3)-I (3)-O (2) #699.8(2)O (7) #4-Ba (1)-O (6) #3124.12(13)O (8)-I (3)-O (2) #6101.8(2)O (9)-Ba (1)-O (8) #585.95(16)O (8)-I (3)-O (3)96.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O (7) #4-Ba (1)-O (3) #1 | 67.31(13)  | O (9)-I (1)-O (6)     | 104.9(2)   |
| O (7) #4-Ba (1)-O (4) #259.64(12)O (7)-I (2)-O (4) #299.9(2)O (7) #4-Ba (1)-O (4)121.13(14)O (7)-I (2)-O (6)95.4(2)O (7) #4-Ba (1)-O (5) #3176.07(12)O (3)-I (3)-O (2) #699.8(2)O (7) #4-Ba (1)-O (6) #3124.12(13)O (8)-I (3)-O (2) #6101.8(2)O (9)-Ba (1)-O (8) #585.95(16)O (8)-I (3)-O (3)96.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | O (7) #4-Ba (1)-O (3)    | 63.92(14)  | O (4) #2-I (2)-O (6)  | 101.1(2)   |
| O (7) #4-Ba (1)-O (4) 121.13(14) O (7)-I (2)-O (6) 95.4(2)   O (7) #4-Ba (1)-O (5) #3 176.07(12) O (3)-I (3)-O (2) #6 99.8(2)   O (7) #4-Ba (1)-O (6) #3 124.12(13) O (8)-I (3)-O (2) #6 101.8(2)   O (9)-Ba (1)-O (8) #5 85.95(16) O (8)-I (3)-O (3) 96.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | O (7) #4-Ba (1)-O (4) #2 | 59.64(12)  | O (7)-I (2)-O (4) #2  | 99.9(2)    |
| O (7) #4-Ba (1)-O (5) #3 176.07(12) O (3)-I (3)-O (2) #6 99.8(2)   O (7) #4-Ba (1)-O (6) #3 124.12(13) O (8)-I (3)-O (2) #6 101.8(2)   O (9)-Ba (1)-O (8) #5 85.95(16) O (8)-I (3)-O (3) 96.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O (7) #4-Ba (1)-O (4)    | 121.13(14) | O (7)-I (2)-O (6)     | 95.4(2)    |
| O (7) #4-Ba (1)-O (6) #3 124.12(13) O (8)-I (3)-O (2) #6 101.8(2)   O (9)-Ba (1)-O (8) #5 85.95(16) O (8)-I (3)-O (3) 96.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | O (7) #4-Ba (1)-O (5) #3 | 176.07(12) | O (3)-I (3)-O (2) #6  | 99.8(2)    |
| O (9)-Ba (1)-O (8) #5 85.95(16) O (8)-I (3)-O (3) 96.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | O (7) #4-Ba (1)-O (6) #3 | 124.12(13) | O (8)-I (3)-O (2) #6  | 101.8(2)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O (9)-Ba (1)-O (8) #5    | 85.95(16)  | O (8)-I (3)-O (3)     | 96.9(2)    |

Symmetry transformations used to generate equivalent atoms:

| #1 x, y-1, z        | #2 -x+1, y+1/2, -z+3/2 | #3 x, -y+1/2, z-1/2 |
|---------------------|------------------------|---------------------|
| #4 -x+1, -y, -z+1   | #5 -x+1, -y+1, -z+1    | #6 -x+2, -y+1, -z+1 |
| #7 x, -y+1/2, z+1/2 | #8 -x+1, y-1/2, -z+3/2 | #9 x, y+1, z        |

| Atom   | <b>U</b> 11 | <b>U</b> 22 | <i>U</i> 33 | U23   | <b>U</b> 13 | <b>U</b> <sub>12</sub> |
|--------|-------------|-------------|-------------|-------|-------------|------------------------|
| Ba (1) | 14(1)       | 13(1)       | 11(1)       | 1(1)  | 1(1)        | -2(1)                  |
| I (1)  | 12(1)       | 14(1)       | 10(1)       | 1(1)  | 0(1)        | 0(1)                   |
| I (2)  | 9(1)        | 11(1)       | 10(1)       | -1(1) | 0(1)        | 1(1)                   |
| I (3)  | 11(1)       | 13(1)       | 9(1)        | 0(1)  | 2(1)        | -1(1)                  |
| O (1)  | 16(3)       | 37(3)       | 27(4)       | 2(3)  | 1(3)        | -10(2)                 |
| O (2)  | 19(3)       | 33(3)       | 12(3)       | 4(2)  | -6(2)       | -6(2)                  |
| O (3)  | 27(3)       | 17(2)       | 16(3)       | 1(2)  | 6(2)        | -9(2)                  |
| O (4)  | 19(3)       | 15(2)       | 10(3)       | -2(2) | 0(2)        | 1(2)                   |
| O (5)  | 19(3)       | 19(2)       | 28(3)       | -8(2) | -3(3)       | 7(2)                   |
| O (6)  | 12(2)       | 18(2)       | 15(3)       | -1(2) | 1(2)        | -4(2)                  |
| O (7)  | 22(3)       | 11(2)       | 13(3)       | 1(2)  | 2(2)        | -1(2)                  |
| O (8)  | 25(3)       | 16(3)       | 34(4)       | -4(2) | 11(3)       | 2(2)                   |
| O (9)  | 20(3)       | 42(3)       | 11(3)       | 1(2)  | -1(2)       | 0(2)                   |

**Table S3.** Anisotropic displacement parameters  $(Å^2)$  for BaI<sub>3</sub>O<sub>9</sub>H.

**Table S4**. Hydrogen bond lengths [Å] and angles [deg.] for BaI<sub>3</sub>O<sub>9</sub>H. D, hydrogen bond donor; A, hydrogen bond acceptor.

| D–H···A                  | d (D-H) | d (H•••A) | d (D…A)  | < (D–H•••A) |
|--------------------------|---------|-----------|----------|-------------|
| 01–H1····O4 <sup>1</sup> | 0.83(8) | 2.10(8)   | 2.748(7) | 135(8)      |

| band gap (eV) | Δ <i>n</i> @1064 nm                                  | refs.                                                                                                           |
|---------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 3.9           | 0.125                                                | 1                                                                                                               |
| 4.35          | 0.172                                                | 2                                                                                                               |
| 4.10          | 0.230                                                | 3                                                                                                               |
| 4.14          | 0.093                                                | 4                                                                                                               |
| 4.34          | 0.092                                                | 4                                                                                                               |
|               | band gap (eV)<br>3.9<br>4.35<br>4.10<br>4.14<br>4.34 | band gap (eV)   Δn @1064 nm     3.9   0.125     4.35   0.172     4.10   0.230     4.14   0.093     4.34   0.092 |

**Table S5.** The investigation of the reported some large birefringent alkali earth iodates.



Figure S1. Experimental and calculated powder XRD pattern of BaI<sub>3</sub>O<sub>9</sub>H.



**Figure S2.** The energy dispersive X-ray spectroscope (EDS) for BaI<sub>3</sub>O<sub>9</sub>H.



**Figure S3**. DSC and TG curves of BaI<sub>3</sub>O<sub>9</sub>H. It is speculated that the decomposition of BaI<sub>3</sub>O<sub>9</sub>H follows the following equation:  $4BaI_3O_9H = 4BaO + 6I_2\uparrow + 15O_2\uparrow + 2H_2O\uparrow$ . The calculated weight loss of gas is about 68.1 %, which is close to experimental value.

## References

- 1. Q. M. Huang, C. L. Hu, B. P. Yang, Z. Fang, Y. Huang, J. G. Mao, Chem. Commun., 2021, 57, 11525–11528.
- 2. X. Q. Jiang, H. P. Wu, H. W. Yu, Z. G. Hu, J. Y. Wang, Y. C. Wu, Cryst. Growth Des., 2021, 21, 4005–4012.
- 3. Y. Li, K. M. Ok, J. Mater. Chem. C, 2022, DOI: 10.1039/D2TC01638A.
- 4. M. Q. Gai, T. H. Tong, Y. Wang, Z. H. Yang, S. L. Pan, *Chem. Mater.*, 2020, 32, 5723-5728.