Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

> Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary Information File

Metals (Al, Fe, Zn) doped in single walled carbon nanotube for catalytic oxidation of H₂O to H₂O₂: A theoretical investigation

Yang Chen, ^a Shuang Zhang, ^a Dan Mao, ^a Rui-Fang Xie, ^a Qiao-Qiao Qin, ^a Xin-Tong Su, ^b Bin

Zhai, ^c Lai-Cai Li *a and Yan Zheng *a

^a College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China

^b Chengdu Tongneng Compressed Natural Gas Co., LTD, Chengdu 610037, China

° Systems Engineering Research Institute of China State Shipbuilding Corporation, Beijing 100094, China

Email: zhengyanchem@163.com; lilcmail@163.com

Contents

Fig.S1 The optimized configuration diagrams of the reactants, products and each intermediate of the catalytic Path I.

Fig.S2 The optimized configuration diagrams of the reactants, products and each intermediate of the catalytic Path II.

Fig.S3 The optimized configuration diagrams of the reactants, products and each intermediate of the catalytic Path III.

Fig.S4 Electron density diagram of R (Al, Zn, Fe)-SWCNT.

Table S5 Adsorption energy of H₂O and O₂ on three catalysts.

Table S6 Configuration parameters of each stationary point in the reaction process of Path I.

Table S7 Activation energy of each reaction step of Path I.

Table S8 Configuration parameters of each stationary point in the reaction process of Path II.

Table S9 Activation energy of each reaction step of Path II.

Table S10 Configuration parameters of each stationary point in the reaction process of Path III.

Table S11 Activation energy of each reaction step of Path III.

Table S12 Activation energy of each reaction step of Path II for (6,4) SWCNT and (6,6) SWCNT.**Fig.S13** Diagram of the lattice and the carbon nanotube in it.

Fig. S1. The optimized configuration diagrams of the reactants, products and each intermediate of the catalytic Path I.

Fig. S2. The optimized configuration diagrams of the reactants, products and each intermediate of the catalytic Path II.

Fig. S3. The optimized configuration diagrams of the reactants, products and each intermediate of the catalytic Path III.

Al-SWCNT

Zn-SWCNT

Fe-SWCNT

Fig. S4. Electron density diagram of R (Al, Zn, Fe)-SWCNT.

Metal	Al1	Zn1	Fe1	Al2	Zn2	Fe2	Al	Zn	Fe
Position		•		ð			2	88	
$E_{ads}(eV)$	-0.77	-0.31	-2.15	-0.42	-0.30	-2.02	-1.99	-1.17	-2.59

Table S5. Adsorption energy of H_2O and O_2 on three catalysts.

Matal	Compounda	Bond length (Å)						
Wietai	Compounds	R-H(1)	H(1)-O(1)	H(1)-O(2)	R-H(3)	H(3)-O(4)	H(3)-O(3)	
	Al-M1	2.524	0.997	2.100	2.419	0.998	_	
	Al-TS1	2.226	1.845	_	_	_	—	
	Al-M2	1.590	—	2.900	—	—	—	
A 1	Al-TS2	2.763	—	1.689	—	—	—	
Al	Al-M3	—	—	—	2.364	0.994	2.505	
	Al-TS3	—	—	—	1.731	1.555	—	
	Al-M4	—	—	—	1.574		2.825	
	Al-TS4	—	—		1.986	—	1.707	
	Zn-M1	2.406	1.020	1.626	2.808	0.977	—	
Zn	Zn-TS1	2.025	1.787		—	—	—	
	Zn-M2	1.513	—	3.394	—	—	—	
	Zn-TS2	2.015	—	2.188	—	—	—	
ZII	Zn-M3	—	—		2.453	0.980	2.330	
	Zn-TS3	—	—	—	1.912	0.203	—	
	Zn-M4	—	—	—	1.555	—	2.825	
	Zn-TS4				1.905		2.021	
	Fe-M1	2.182	0.997	1.868	2.503	0.977		
	Fe-TS1	1.827	1.572		—	—	—	
Fe	Fe-M2	1.465	—	2.415	—	—	—	
	Fe-TS2	1.880	—	1.697	—	—	—	
	Fe-M3	—	—	—	2.450	0.979	2.550	
	Fe-TS3	—	—	—	1.955	1.616	—	
	Fe-M4	_	—	_	1.483	—	2.413	
	Fe-TS4				2.014		1.528	

Table S6. Configuration parameters of each stationary point in the reaction process of Path I.

Path	Metal	Compounds	<i>E</i> r(kcal/mol)	<i>E</i> _a (kcal/mol)
		Al-M1	0.00	
		Al-TS1	35.39	35.39
		Al-M2	-20.35	
		Al-TS2	-15.89	4.47
	Al	Al-M3	-19.96	
		Al-TS3	33.11	53.07
		Al-M4	37.15	
		Al-TS4	126.90	89.74
		Al-P	67.84	
		Fe-M1	0.00	
		Fe-TS1	72.96	72.96
		Fe-M2	34.26	
		Fe-TS2	84.29	50.03
Path I	Fe	Fe-M3	7.98	
		Fe-TS3	103.22	95.24
		Fe-M4	33.50	
		Fe-TS4	112.71	79.22
		Fe-P	16.88	
		Zn-M1	0.00	
		Zn-TS1	69.64	69.64
		Zn-M2	0.46	
		Zn-TS2	62.70	62.24
	Zn	Zn-M3	7.79	
		Zn-TS3	117.98	110.19
		Zn-M4	49.62	
		Zn-TS4	97.64	48.02
		Zn-P	-1.15	

 Table S7. Activation energy of each reaction step of Path I.

M-4-1	C			Bond len	igth (Å)		
Ivicial	Compounds	R-H(1)	H(1)-O(1)	H(1)-O(2)	R-H(3)	H(3)-O(4)	H(3)-O(3)
	Al-M1	2.524	0.997	2.100	2.419	0.998	_
A 1	Al-M3	_	_	_	2.364	0.994	2.505
Al	Al-TS5	_	1.690	1.680	_	_	_
	Al-TS6	—	_	—	_	1.462	1.469
	Zn-M1	2.406	1.020	1.626	2.808	0.977	_
7	Zn-M3	_	_	_	2.453	0.980	2.330
ZII	Zn-TS5	—	1.282	1.386	—	_	—
	Zn-TS6	—		—	_	1.306	1.705
	Fe-M1	2.182	0.997	1.868	2.503	0.977	
Ea	Fe-M3	—	_	—	2.450	0.979	2.550
re	Fe-TS5	_	1.420	1.400	_	_	_
	Fe-TS6	—		—		1.291	1.734

Table S8. Configuration parameters of each stationary point in the reaction process of Path II.

Table S9. Activation energy of each reaction step of Path II.

Path	Metal	Compounds	<i>E</i> _r (kcal/mol)	Ea(kcal/mol)
		Al-M1	0.00	
		Al-TS5	30.51	30.51
	Al	Al-M3	-19.96	
		Al-TS6	4.85	24.81
		Al-P	-1.35	
-		Fe-M1	0.00	
		Fe-TS5	18.67	18.67
Path II	Fe	Fe-M3	7.98	
		Fe-TS6	69.79	61.81
		Fe-P	16.88	
		Zn-M1	0.00	
		Zn-TS5	6.62	6.62
	Zn	Zn-M3	7.79	
		Zn-TS6	46.00	38.21
		Zn-P	-1.15	

Matal	Commounda	Bond length (Å)						
Metal	Compounds	R-H(1)	H(1)-O(1)	H(1)-O(2)	R-H(3)	H(3)-O(4)	H(3)-O(3)	
	Al-M1	2.524	0.997	2.100	2.419	0.998	—	
A 1	Al-TS1	2.226	1.845	—	—	—	—	
Al	Al-M2	1.590	_	2.900	—	—	—	
	Al-TS7	2.110	1.685	—	2.318	1.280	—	
	Zn-M1	2.406	1.020	1.626	2.808	0.977	_	
7.	Zn-TS1	2.025	1.787	—	—		—	
Zn	Zn-M2	1.513	—	3.394	—	—	—	
	Zn-TS7	2.350	2.488	—	2.413	2.067	—	
	Fe-M1	2.182	0.997	1.868	2.503	0.977		
Ea	Fe-TS1	1.827	1.572	—	—	—	—	
ге	Fe-M2	1.465	—	2.415	_	_	—	
	Fe-TS7	1.912	1.615	_	2.078	1.643	_	

Table S10. Configuration parameters of each stationary point in the reaction process of Path III.

Table S11. Activation energy of each reaction step of Path III.

Path	Metal	Compounds	<i>E</i> _r (kcal/mol)	E _a (kcal/mol)
		Al-M1	0.00	
		Al-TS1	35.39	35.39
	4.1	Al-M2	-20.35	
	Al	Al-TS7	61.63	81.98
		Al-M5	5.02	
		Al-P2	-21.63	
		Fe-M1	0.00	
	F	Fe-TS1	72.96	72.96
D 4 HI		Fe-M2	34.26	
Path III	Fe	Fe-TS7	89.72	55.46
		Fe-M5	3.15	
		Fe-P2	-1.13	
_		Zn-M1	0.00	
		Zn-TS1	69.64	69.64
	7	Zn-M2	0.46	
	Zn	Zn-TS7	115.58	115.12
		Zn-M5	28.16	
		Zn-P2	10.01	

Path	SWCNT	Compounds	Er(kcal/mol)	Ea(kcal/mol)
		Al-M1	0.00	
		Al-TS5	30.51	30.51
	(6,4)	Al-M3	-19.96	
		Al-TS6	4.85	24.81
Dath II		Al-P	-1.35	
Paul II		Al-M1	0.00	
		Al-TS5	60.65	60.65
	(6,6)	Al-M3	33.42	
		Al-TS6	48.36	14.94
		Al-P	35.29	

Table S12. Activation energy of each reaction step of Path II for (6,4) SWCNT and (6,6) SWCNT.

Fig. S13. Diagram of the lattice and the carbon nanotube in it.