Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Reaction of H₂ with Polyoxometalate supported Rhodium(0) and Iridium(0) Nanoparticles in aqueous suspensions: A kinetic Study

a	Department of Chemical Sciences and The Radical Research Center

Ariel University, Ariel, Israel. E-mail:
 ^b Chemistry Department

- Ben-Gurion University, Beer-Sheva, Israel
 Department of Chemical Sciences
- Ariel University, Ariel, Israel
- ^d Department of Chemical Engineering and The Radical Research Center Ariel University, Ariel, Israel. E-mail: <u>yaelyt@ariel.ac.il</u>

Table of contents

imple preparation for HR-TEM and NMR spectroscopy	2
gure S1	3
gure \$2	1
gure \$3	1
gure S4	5
ible S1	5
gure \$5	5
ıble S2	5
gure S6	7
ible \$3	7
gure S7	3
ible \$4	3
gure S8	¢
ıble \$5)
gure S9	10
ible S6	10
gure \$10	1
ible S7	11
gure S11	2
ible S8	12

Sample preparation for High-Resolution TEM (HR-TEM)

The Rh⁰ NPs, Rh⁰-POM, Ir⁰ NPs, and Ir⁰-POM nanoparticles were characterized using HR TEM (JEOL 2100, operated at 200 KeV,) equipped with an EDS system for composition analysis. The samples were synthesized by dispersing the NPs in an isopropanol-water mixture and placing one drop of the suspension onto a 400 mesh copper grid. The grids were dried in the air before the measurement was done.

NMR Spectroscopy

The NMR spectra were measured on a 400 MHz Bruker Avance III HD (¹H 400MHz and ³¹P 162MHz) spectrometer equipped with a 5 mm tunable broadband probe (BBFO). All the samples were dissolved in solutions of H₂O (90%)/D₂O (10%), the NMR experiments were performed at 300 K.

¹**H NMR spectra** were measured using a pre-saturation experiment (*zgpr*) and the remaining signal for water was used as an internal reference (4.79 ppm for H₂O), for the chemical shifts. ([Rh] and [Ir] = 0.25 mM)

³¹P{¹H} NMR spectra were measured using a proton decoupling experiment (*zgpg*) with an equal number of scans among all the samples. A solution of 85% H₃PO₄ in H₂O (0 ppm for $^{31}PO_4$) was used as an external reference. ([Rh] and [Ir] = 0.125 mM, [POM] = 10.0 mM)

Calculations for the number of Rh and Ir atoms on the surface

[NP] = C/n, where C = Concentration of M⁰ (Rh⁰ and Ir⁰), based on the metal precursors, n = number of M atoms per particle

$$n=\,\frac{4}{3}\pi r^3\,\frac{{\rm N}}{{\rm M.W}}\rho$$

For Rh,

 $\rho_{Rh} = 12.41 \text{ g/cm}^3$

M.W. = 102.90 g/mol

Diameter of Rh nanoparticle = 2.4 nm $r = 1.20 \text{ nm} = 1.20 \times 10^{-7} \text{ cm}$

From the calculations,

n = 525.0 Rh atoms/ Rh NPs

Therefore,

Number of Rh atoms on the surface of the NPs (ns),

 $n_s = n [\frac{r^3 - (r - 2r_{(Rh)})^3}{r^3}] \qquad r_{Rh} = 1.34 \text{ \AA} = 1.34 \times 10^{-8} \text{ cm} \qquad r = 1.20 \times 10^{-9} \text{ m} = 1.20 \times 10^{-7} \text{ cm}$

 $n_s = 279$ Number of Rh atoms on the surface of one NP.

For Ir

 ρ_{Ir} = 22.56 g/cm^3, M.W. = 192.21 g/mol and r = 1.25 nm

From the calculations,

n=578 Ir atoms per Ir particle and $n_s = 298$ atoms/particle

¹H NMR

Figure S1. ¹H NMR (400 MHz, 90 % $H_2O/10$ % D_2O , 300 K) spectrum of synthesized Rh and Ir nanoparticles (0.125 mM). The peaks show the presence of citrate.

³¹P NMR

Figure S2. ³¹P NMR (162 MHz, 90% H₂O/10% D₂O, 300 K) spectra of bare POM (**A**) Before H₂ and (**B**) After H₂.

Kinetics of bare POM with H₂

Figure S3. Typical kinetic curves of the reaction of $PW_{12}O_{40}^{3-}$ with H_2 (**A**) 1.0×10^{-4} M POM and (**B**) 2.0×10^{-4} M POM.

Rh⁰NP@POM-H₂ (2.40 nm Rh)

POM dependence

Figure S4. Typical kinetic curves of the reaction of Rh⁰-NP@PW₁₂O₄₀³⁻ with three different concentrations of PW₁₂O₄₀³⁻ with H₂ saturated water (pH – 1.5) at 490 nm.

Table S1. The k_{obs} values and the ratio of their absorbance for three different concentrations of PW₁₂O₄₀³⁻ (0.0001, 0.0002, and 0.0003 mol/L) by maintaining a constant concentration of surface Rh atoms (3.32×10^{-5} mol/L) and H₂ (0.00040 mol/L).

Concentration of H ₃ PW ₁₂ O ₄₀ (mol/L)	k _{obs} s ⁻¹ in Rh ⁰ -POM <i>k</i> 1	k _{obs} s ⁻¹ in Rh ⁰ -POM k2	Ratio of Absorbance A1/A2
0.00010	0.60	0.066	1.10
0.00020	0.58	0.057	1.50
0.00030	0.62	0.056	1.70

Rh dependence

Figure S5. A typical kinetic curve of the reaction of Rh⁰-NP@PW₁₂O₄₀³⁻ with four different concentrations of surface Rh atoms with H₂ saturated water (pH – 1.6) at 490 nm.

Table S2. The k_{obs} values and the ratio of their absorbance for four different concentrations of surface Rh atoms by maintaining a constant concentration of PW₁₂O₄₀³⁻ (0.00010 mol/L) and H₂ (0.00040 mol/L).

Concentration of Rh atoms on the surface (mol/L)	k _{obs} s ⁻¹ in Rh ⁰ -POM <i>k</i> 1	k _{obs s} -1 in Rh ^o -POM <i>k</i> 2	Ratio of Absorbance A1/A2
5.31×10 ⁻⁶	0.32	0.032	0.70
1.32×10 ⁻⁵	0.40	0.053	0.81
2.65×10 ⁻⁵	0.48	0.055	1.0
3.32×10 ⁻⁵	0.60	0.066	1.10

H₂ dependence

Figure S6. A typical kinetic curve of the reaction Rh^{0} -NP@PW₁₂O₄₀³⁻ with three different concentrations of H₂ saturated water (pH 1.5) at 490 nm.

Table S3. The k_{obs} values and the ratio of their absorbance for four different concentrations of H₂ by maintaining a constant concentration of PW₁₂O₄₀³⁻ (0.00010 mol/L) and surface Ir atoms (3.32×10^{-5} mol/L).

Concentration of H ₂ (mol/L)	k _{obs} s ⁻¹ in Ir ⁰ -POM <i>k</i> 1	k _{obs} s ⁻¹ in Ir ⁰ -POM <i>k</i> 2	Ratio of Absorbance A1/A2
0.00020	0.39	0.03	32.0
0.00030	0.45	0.05	9.0
0.00040	0.50	0.056	1.10

Ir⁰NP@POM-H₂ (2.50 nm Ir)

POM dependence

Figure S7. Typical kinetic curves of the reaction of Ir^0 -NP@PW₁₂O₄₀³⁻ with three different concentrations of PW₁₂O₄₀³⁻ with H₂ saturated water (pH – 1.5) at 490 nm.

Table S4. The k_{obs} values and the ratio of their absorbance for three different concentrations of PW₁₂O₄₀³⁻ (0.0001, 0.0002, and 0.0003 mol/L) by maintaining a constant concentration of surface Ir atoms (5.15×10⁻⁵ mol/L) and H₂ (0.00040 mol/L).

Concentration of H ₃ PW ₁₂ O ₄₀ (mol/L)	k _{obs} s⁻¹ in Ir⁰-POM <i>k</i> 1	k _{obs} s ⁻¹ in Ir ⁰ -POM <i>k</i> 2	Ratio of Absorbance A1/A2
0.00010	0.36	0.21	5.92
0.00020	0.41	0.19	12.14
0.00030	0.41	0.20	74.0

Ir dependence

Figure S8. A typical kinetic curve of the reaction of Ir^0 -NP@PW₁₂O₄₀³⁻ with four different concentrations of surface Ir atoms with H₂ saturated water (pH – 1.6) at 490 nm.

Table S5. The k_{obs} values and the ratio of their absorbance for four different concentrations of surface Ir atoms by maintaining a constant concentration of PW₁₂O₄₀³⁻ (0.00010 mol/L) and H₂ (0.00040 mol/L).

Concentration of Ir atoms on the surface (mol/L)	k _{obs s} -1 in Ir ⁰ -POM <i>k</i> 1	k _{obs s} -1 in Ir ⁰ -POM <i>k</i> 2	Ratio of Absorbance A1/A2
5.15×10⁻⁵	0.36	0.21	5.92
7.73×10 ⁻⁵	0.47	0.23	16.50
1.03×10 ⁻⁴	0.53	0.25	17.30
1.28×10 ⁻⁴	0.63	0.27	50.16

H₂ dependence

Figure S9. A typical kinetic curve of the reaction $Ir^0-NP@PW_{12}O_{40}^{3-}$ with three different concentrations of H_2 saturated water (pH 1.5) at 490 nm.

Table S6. The k_{obs} values and the ratio of their absorbance for four different concentrations of H ₂ by maintaining
a constant concentration of PW $_{12}O_{40}^{3-}$ (0.00010 mol/L) and surface Ir atoms (5.15×10 ⁻⁵ mol/L).

Concentration of H ₂ (mol/L)	k _{obs} s ⁻¹ in Ir ⁰ -POM <i>k</i> 1	k _{obs} s ⁻¹ in Ir ⁰ -POM <i>k</i> 2	Ratio of Absorbance A1/A2
0.00020	0.30	0.15	32.88
0.00036	0.33	0.16	25.88
0.00040	0.38	0.18	13.20

Rh-H₂-POM

Rh dependence

Figure S10. A typical kinetic curve of the reaction of Rh^0 -NP-H₂ with four different concentrations of surface Rh atoms at 490 nm.

Table S7. The k_{obs} values and the ratio of their absorbance for four different concentrations of surface Rh atoms by maintaining a constant concentration of PW₁₂O₄₀³⁻ (0.00010 mol/L) and H₂ (0.00040 mol/L).

Concentration of Rh atoms on the surface (mol/L)	k _{obs} s ⁻¹ in Rh ⁰ -РОМ k1	k _{obs} s ⁻¹ in Rh ⁰ -POM k2	Ratio of Absorbance A1/A2
1.32×10 ⁻⁵	0.42	0.058	0.44
2.65×10 ⁻⁵	0.91	0.093	0.50
3.32×10 ⁻⁵	1.50	0.150	0.52
6.64×10 ⁻⁵	2.30	0.190	

Ir-H₂-POM

Ir dependence

Figure S11. A typical kinetic curve of the reaction of Ir^0 -NP-H₂ with four different concentrations of surface Ir atoms at 490 nm.

Table S8. The k_{obs} values and the ratio of their absorbance for four different concentrations of surface Ir atoms by maintaining a constant concentration of PW₁₂O₄₀³⁻ (0.00010 mol/L) and H₂ (0.00040 mol/L).

Concentration of Ir atoms on the surface (mol/L)	k _{obs} s ⁻¹ in Ir ⁰ -POM k1	k _{obs} s ⁻¹ in Ir⁰-POM k2	Ratio of Absorbance A1/A2
5.15×10 ⁻⁵	2.0	0.53	21.33
7.73×10 ⁻⁵	2.40	0.63	25.0
1.28×10 ⁻⁴	4.0	0.68	36.36