1

Supporting Information

Degradation conceptualization of an innovative perovskite solar cell fabricated using

 SnO_{2} and P 3 HT as electron and hole transport layersP. Vijendhar Reddy, Pratibha Giri and J.P. Tiwari*

Advanced Materials and Devices Metrology Division
(Photovoltaic Metrology Group)
CSIR-National Physical laboratory, K.S. Krishnan Marg, New Delhi-110060
*Corresponding author
Email: jai_ti2002@yahoo.com, tiwarijp@nplindia.org
Figure S1. Morphology of the MAPbI_{3} film annealed at $100^{\circ} \mathrm{c}$ for (a) 10 and (b) 40 minutes, respectively.

(a)

(b)

Figure S2. The device's active area is demonstrated in the fabricated devices as $0.20 \mathrm{~cm}^{2}$ and $0.12 \mathrm{~cm}^{2}$ (for the shown image, we have fabricated perovskite solar cells on two different device patterns). For the right-hand side image, we have patterned FTO glass with a small portion of FTO strip ($\sim 3 \mathrm{~mm}$) using laser scriber, i.e. (red line), the remaining portion is glass, for metal (Ag) deposition we designed a metal mask strip of ($\sim 4 \mathrm{~mm}$). However, for the lefthand side image, we have patterned FTO glass with a large portion of the FTO strip (shown by the redline rectangle) remaining portion is glass, and for metal (Ag) deposition, we designed a metal (Ag) mask strip of $(\sim 4 \mathrm{~mm})$. The yellow rectangle shows the active area. We define the PCE with the help of $\mathrm{V}_{\mathrm{oc}}, \mathrm{J}_{\mathrm{sc}}, \mathrm{FF}$, and power input.

Figure S3. (a)Device demonstration by using P3HT and Spiro-OMeTAD as HTL in $\mathrm{FTO} / \mathrm{SnO}_{2} / \mathrm{MAPbI}_{3} / \mathrm{HTL} / \mathrm{Ag}$ (b) Silver electrode degradation and its corrosion on the devices where P3HT and spiro-OMeTAD are used as an HTL in the device of structure $\mathrm{FTO} / \mathrm{SnO}_{2} / \mathrm{MAPbI}_{3} / \mathrm{HTL} / \mathrm{Ag}$.

(a)

(b)

