Supplementary information

Porous CeNiO₃ with enhanced electrochemical performance and

prolonged cycle life (> 50000 cycles) via lemon-assisted sol-gel auto

combustion method.

M.P. Harikrishnan, A. Chandra Bose*

Nanomaterials Laboratory, Department of Physics, National Institute of Technology,

Tiruchirappalli, Tamilnadu, India, 620015

*Email id:acbose@nitt.edu

Corresponding Author:

A. Chandra Bose

Professor

Department of Physics

National Institute of Technology Tiruchirappalli

Tiruchirappalli, Thuvakudi P.O-620015

Tamilnadu, India

Tel: +91 (0) 431 2503605

Email id: acbose@nitt.edu

Fig. S1. (A-C) Photograph of bubbling and auto combustion during synthesis, (D-G) fully combusted samples, and (H-I) an array of LEDs arranged in a way to display "NITT" on to a PCB.

Fig. S2. XRD patterns of as prepared sample, sample annealed at 450 $^{\circ}$ C, and 650 $^{\circ}$ C of

CNO3 material.

Table S1. Resistance value, surface area, specific capacity and cyclic stability of CNO electrodes

 in three-electrode system.

Sample	Surface	Pore	Maximum Specific		Rs	Rct	Cyclic
	area	volume	capa	city			stability
	m ² g ⁻¹		CV	GCD	Ω	Ω	%
			(2mVs ⁻¹)	(1 Ag ⁻¹)			
CNO1	17.00	2.421	239.12	242.54	1.0962	1.4436	99.48
CNO2	38.57	3.559	531.63	589.33	0.6551	0.9549	100.79
CNO3	56.58	3.586	598.51	605	0.4718	0.8702	102.69
CNO4	44.26	3.964	516.56	591.25	0.7410	0.7218	100.81

Fig. S3. (A) N₂ adsorption-desorption isotherms, and (B) BJH pore size distributions of CNO1,CNO2,CNO3, and CNO4.

Fig.S4. Equivalent fitted circuit of (A) CNO3 electrode in 3 electrode system (B) symmetric cell

Fig. S5. (A-C) The variation of cathodic/anodic peak currents for the CNO1, CNO2, and CNO4 electrodes as a function of the square root of scan rates; (D-E) The relationship between $log(i_p)$ and log(v) for the CNO1, CNO2, and CNO4 electrodes.

Fig. S6. (A-I) Surface-confined (red region) and diffusion-controlled (green region) contribution to charge storage of CNO3 electrode at different scan rates from 2-100 mVs⁻¹, (J-L) Surface-confined (green region) and diffusion-controlled (red region) contribution to charge storage of the CNO1, CNO2, and CNO4 electrodes at different scan rates.

Fig. S7. (A) The operating potential window of CNO3 electrode in negative and positive potential at a scan rate of 70 mVs⁻¹ (B) CV at different potential at a scan rate of 150 mVs⁻¹ (C) GCD at different potential at a current density of 2.5 Ag⁻¹.

Sl. No.	Electrode	Synthesis	Electrol	Specific	Surface	Scan	Energy	Power	Cyclic	Reference
	material	Method	yte	capacity/	area	rate/Curr	density	density	stability	
				capacitance		ent				
						density				
1	SrTiO ₃	Sol-gel	3 M	590 Fg ⁻¹	50.4 m ² g ⁻¹	5 mVs ⁻¹	27.8 Wh	303.3 W	99%	[1]
			КОН				kg-1	kg-1	retention	
									after 5000	
									GCD cycles	
									at 5 Ag ⁻¹	
2	SrCoO ₃	EDTA-citric	6 M	572 Fg ⁻¹	1.53 m ² g ⁻¹	1 Ag-1	27.5 Wh	750 W	Reached to	[2]
		acid method	КОН				kg-1	kg-1	maximum	
									capacitance	
									in 3500	
									cycles,	

Table S2. Electrochemical performances of different perovskite oxides

									retains 87.4%	
									after 5000	
									GCD cycles	
									at 1 Ag ⁻¹	
3	LaMnO ₃	Chemical	0.5 M	520 Fg ⁻¹	18 m ² g ⁻¹	1 Ag-1	52.5 Wh	1000 W	Retains	[3]
		precipitation	Na ₂ SO ₄				kg-1	kg-1	117% of its	
		method							initial	
									capacitance	
									after 7500	
									cycles at 10	
									Ag-1	
4	LaMnO ₃	Sol-gel	0.5 M	580 Fg ⁻¹		1 Ag-1	43.55 Wh	770.5 W	Retains	[4]
	(Porous)	combustion	Na ₂ SO ₄				kg-1	kg-1	135% of its	
		method							initial	
									capacitance	
									10 Ag ⁻¹	
		method							capacitance 10 Ag ⁻¹	

5	LaMnO _{3-d}	Reverse-phase	6 M	609.8 Fg ⁻¹	$10.6 \text{ m}^2\text{g}^{-1}$	2 mVs ⁻¹	220.4 Wh	61.2 W		[5]
		hydrolysis	КОН				kg ⁻¹	kg ⁻¹		
6	LaNiO ₃	Sol-gel	6 M	139.2 mAh	181.2 m ² g ⁻	1 Ag-1	65.84 Wh	1800 W	92.39%	[6]
	(2D sheets)		КОН	g-1	1		kg-1	kg-1	retention	
									after 10,000	
									CV cycles at	
									150 mVs ⁻¹	
7	LaCoO ₃	Urea	6 M	706.9 Fg ⁻¹		1 Ag-1	47.64 Wh	804.4 W	96%	[7]
		combustion	КОН				kg-1	kg-1	retention	
									after 4000	
									GCD cycles	
									at 5 A g ⁻¹	
8	LaFeO ₃	MOF derived	1 M	241.3 Fg ⁻¹	41 m ² g ⁻¹	1Ag-1	34 Wh	900 W	92.2%	[8]
		using	Na ₂ SO ₄				kg-1	kg-1	retention	
		template							after 5000	
									GCD cycles	

									at 10 A g ⁻¹	
9	CeNiO ₃	Co-	3 M	399 Cg ⁻¹	24.83 m ² g ⁻	1 Ag-1	27 Wh	826 W	Capacity	[9]
		precipitation	КОН		1		kg ⁻¹	kg-1	retention of	
									92% for 5000	
									cycles at	
									current	
									density of 10	
									Ag^{-1}	
10	CeNiO ₃	Sol-gel auto	3 M	605 Cg ⁻¹	$56.58 \text{ m}^2\text{g}^-$	l Ag-l	43.45 Wh	800 W	114.21 %	This
10	CeNiO ₃	Sol-gel auto combustion	3 M KOH	605 Cg ⁻¹	56.58 m ² g ⁻	1 Ag-1	43.45 Wh kg-1	800 W kg-1	114.21 % initial	This Work
10	CeNiO ₃	Sol-gel auto	3 M KOH	605 Cg ⁻¹	56.58 m ² g ⁻	1 Ag-1	43.45 Wh kg-1	800 W kg-1	114.21 % initial capacity	This Work
10	CeNiO ₃	Sol-gel auto combustion	3 М КОН	605 Cg ⁻¹	56.58 m ² g ⁻	1 Ag-1	43.45 Wh kg-1	800 W kg-1	114.21 % initial capacity retention	This Work
10	CeNiO ₃	Sol-gel auto combustion	3 М КОН	605 Cg ⁻¹	1	1 Ag-1	43.45 Wh kg-1	800 W kg-1	114.21 % initial capacity retention after 50000	This Work
10	CeNiO ₃	Sol-gel auto combustion	3 M KOH	605 Cg ⁻¹	56.58 m ² g ⁻	1 Ag-1	43.45 Wh kg-1	800 W kg-1	114.21 % initial capacity retention after 50000 cycles at a	This Work
10	CeNiO ₃	Sol-gel auto combustion	3 M KOH	605 Cg ⁻¹	56.58 m ² g ⁻	1 Ag-1	43.45 Wh kg-1	800 W kg-1	114.21 % initial capacity retention after 50000 cycles at a current	This Work
10	CeNiO ₃	Sol-gel auto combustion	3 M KOH	605 Cg ⁻¹	56.58 m ² g ⁻	1 Ag-1	43.45 Wh kg-1	800 W kg-1	114.21 % initial capacity retention after 50000 cycles at a current density 25	This Work

				Ag-1	

The laboratory prototype supercapattery device in the form of a CR-2032 type coin cell was constructed using porous CeNiO3 (CNO3) as positve and negative electrode, and Whatmannn filter paper (150 mm) as the seperator. The supercapattery performance was carried out in 3M KOH.

Fig.S8. (A) Components of coin cell (B&C) fabricated coin cell (D) illuminating "NITT" using eight (4 for green, 2 for blue and 2 for red) symmetric cell.

References:

- 1 A. K. Tomar, G. Singh and R. K. Sharma, *J. Power Sources*, 2019, **426**, 223–232.
- 2 Y. Liu, J. Dinh, M. O. Tade and Z. Shao, *ACS Appl. Mater. Interfaces*, 2016, **8**, 23774–23783.
- 3 P. M. Shafi, N. Joseph, A. Thirumurugan and A. C. Bose, *Chem. Eng. J.*, 2018, **338**, 147–156.
- 4 P. M. Shafi, A. C. Bose and A. Vinu, *ChemElectroChem*, 2018, **5**, 3723–3730.
- 5 J. T. Mefford, W. G. Hardin, S. Dai, K. P. Johnston and K. J. Stevenson, *Nat. Mater.*, 2014, **13**, 726–732.
- 6 Z. Li, W. Zhang, H. Wang and B. Yang, *Electrochim. Acta*, 2017, **258**, 561–570.
- G. Guo, K. Ouyang, J. Yu, Y. Liu, S. Feng and M. Wei, ACS Appl. Energy Mater., 2020, 3, 300–308.
- 8 Y. Zhang, J. Ding, W. Xu, M. Wang, R. Shao, Y. Sun and B. Lin, *Chem. Eng. J.*, 2020, **386**, 124030.
- 9 M. P. Harikrishnan, A. J. C. Mary and A. C. Bose, *Electrochim. Acta*, 2020, **362**, 137095.