Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Ration design of 0D/3D Sn₃O₄/NiS nanocomposite for enhanced

photocatalytic hydrogen generation

Hele Liu a, Pengfei Tan a*, Huanhuan Zhai a, Mingyuan Zhang a, Jiaoyang Chen a,

Ruifeng Ren^a, Ziyu Wang^b, Jun Pan^{a*}

^a State Key Laboratory for Powder Metallurgy, Central South University, Changsha

410083, PR China

^b The Institute of Technological Sciences, Wuhan University, Wuhan 430072, PR

China

* Corresponding authors

E-mail address: jun.pan@csu.edu.cn; tpf0203@csu.edu.cn

Fig. S1 SEM images of (a-d) $Sn_3O_4/0.3\%$ NiS, $Sn_3O_4/0.5\%$ NiS, $Sn_3O_4/1.5\%$ NiS, $Sn_3O_4/2.0\%$ NiS, (e) Sn_3O_4 , (f) NiS nanoparticles.

Fig. S2 (a) HRTEM image of the Sn_3O_4 , (b) TEM image of the NiS, (c) HRTEM image of the NiS, (d) SEM image of NiS.

Fig. S3 XPS spectra of $Sn_3O_4/1.0\%$ NiS: (a) survey spectrum, XPS spectra of Sn_3O_4 : (b) survey spectrum and the high-resolution XPS spectra of (c) Sn 3d, (d) O 1s.

Fig. S4 The cyclic hydrogen production test of $Sn_3O_4/1.0\%$ NiS under visible light.

Apparent quantum efficiency (AQE) calculation

Using 300 W Xenon lamp as light source and 420 nm bandpass filter, the hydrogen production after 4 h of light is measured, so as to obtain the apparent quantum rate of photocatalyst. The AQE calculation formula is as follows.^{1, 2}

$$AQE (\%) = \frac{2 \times number of evolved hydrogen molecules}{Number of incident phtons} \times 100\%$$

Fig. S5 The Mott-Schottky curve of (a) pure Sn_3O_4 , (b) $Sn_3O_4/0.3\%$ NiS, (c) $Sn_3O_4/0.5\%$ NiS, (d) $Sn_3O_4/1.0\%$ NiS, (e) $Sn_3O_4/1.5\%$ NiS, (f) $Sn_3O_4/2.0\%$ NiS.

Sr. No.	Photocatalyst material	Light source	Scavenger	H_2 evolution (µmol · g ⁻¹ · h ⁻¹)	Ref.
01	Sn ₃ O ₄ /NiS	Visible light	CH ₃ OH aqueous	17.43	This work
		$(\lambda \ge 420 \text{ nm})$	solution		
02	Sn ₃ O ₄ /Pt	Visible light	CH ₃ OH aqueous	16.66	Manıkandan
		$(\lambda > 400 \text{ nm})$	solution		et al.; ³
03	Sn ₃ O ₄ /TiO ₂	Simulated	CH ₃ OH aqueous	17.00	Yu et al.;4
		sunlight	solution		,
04	Sn ₃ O ₄ /rGO	Visible light	CH ₃ OH aqueous	19.95	Yu et al.; ⁵
		$(\lambda \ge 420 \text{ nm})$	solution		
05	Sn ₃ O ₄ microballs	Simulated	CH ₃ OH aqueous	8.84	Balgude et
		sunlight	solution		al.; ⁶
06	Sn ₃ O ₄ @BiVO ₄ -QD	Simulated	CH ₃ OH aqueous	12.10	Chen et al.; ⁷
		sunlight	solution		
07	Ni doped Sn ₃ O ₄	Visible light	CH ₃ OH aqueous	14.55	Yang et al.; ⁸
		$(\lambda \ge 420 \text{ nm})$	solution		
08	Sn ₃ O ₄	Visible light	CH ₃ OH aqueous	9.00	Tanabe et
		(λ >400 nm)	solution		al.;9
09	Phosphoric acid	Simulated	Overall water	9.60	Chen et al.; ¹⁰
	modified Sn ₃ O ₄	sunlight	splitting		
10	Ultrathin nanosheet	Visible light	CH ₃ OH aqueous	15.50	Tanabe et
	Sn ₃ O ₄	(λ >400 nm)	solution		al.; ¹¹

Table S1 Summary of hydrogen evolution rates of Sn_3O_4 -based materials in recent studies

Samples	$\tau_1(ns)$	$\tau_2(ns)$	A_{1} (%)	A ₂ (%)	$\tau_{a}(ns)$		
Sn ₃ O ₄	0.166	3.41	780.81	84.67	2.41		
Sn ₃ O ₄ /1%NiS	1.39	8.142	39.12	13.26	5.70		
					$A_{i}t^{2}$		

Table S2 Attenuation time and relative amplitude parameters of the Sn_3O_4 and $Sn_3O_4/1$ %NiS, as well as the mean lifetime after fitting accordingly.

The mean lifetime of fluorescence emission was measured by a formula $\langle \tau \rangle = \sum_{i=1}^{i} \frac{A_i t_i^2}{A_i t_i}$.

References

- B. Lin, H. Li, H. An, W. Hao, J. Wei, Y. Dai, C. Ma and G. Yang, *Appl. Catal.*, B, 2018, 220, 542-552.
- 2 H. Li, X. Yan, B. Lin, M. Xia, J. Wei, B. Yang and G. Yang, *Nano Energy*, 2018, 47, 481-493.
- M. Manikandan, T. Tanabe, P. Li, S. Ueda, G. V. Ramesh, R. Kodiyath, J. Wang,
 T. Hara, A. Dakshanamoorthy, S. Ishihara, K. Ariga, J. Ye, N. Umezawa and H.
 Abe, ACS Appl. Mater. Interfaces, 2014, 6, 3790-3793.
- 4 X. Yu, L. Wang, J. Zhang, W. Guo, Z. Zhao, Y. Qin, X. Mou, A. Li and H. Liu, J. Mater. Chem. A, 2015, 3, 19129-19136.
- 5 X. Yu, Z. Zhao, D. Sun, N. Ren, J. Yu, R. Yang and H. Liu, *Appl. Catal.*, *B*, 2018, 227, 470-476.
- 6 S. Balgude, Y. Sethi, B. Kale, D. Amalnerkar and P. Adhyapak, *Mater. Chem. Phys.*, 2019, 221, 493-500.
- 7 L. Chen, C. Hou, Z. Liu, Y. Qu, M. Xie and W. Han, *Chem. Commun.*, 2020, 56, 13884-13887.
- 8 R. Yang, Y. Ji, L. Wang, G. Song, A. Wang, L. Ding, N. Ren, Y. Lv, J. Zhang and X. Yu, ACS Appl. Nano Mater., 2020, 3, 9268-9275.
- 9 T. Tanabe, T. Tanikawa, K. Nakamori, S. Ueda, B. Nanzai, Y. Matsubara and F. Matsumoto, *Int. J. Hydrogen Energy*, 2020, 45, 28607-28615.
- 10 L. Chen, S. Yue, J. Wang, W. Chen, Y. Zhang, M. Xie and W. Han, *Appl. Catal.*, *B*, 2021, **299**, 120689.
- 11 T. Tanabe, K. Nakamori, T. Tanikawa, Y. Matsubara and F. Matsumoto, J. Photochem. Photobiol., A, 2021, 420, 113486.