Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary file

Graphene oxide supported highly porous TiO2 nano leaflets for ultrafast adsorption and

photochemical decomposition of 2,4,6-trinitrotolune from water

Pradeep Kumar, Bharti*, Pankaj Kumar Sharma, Pramod Kumar Rai

Environment Safety Group, Centre for Fire, Explosive and Environment Safety (CFEES), Brig.

S. K. Mazumdar Road, Timarpur, Delhi-110054, India

Tel: +91 11 23907203 Fax: +91 11 23819547

*Author for correspondence: <u>bharti_2006@rediffmail.com.</u>

Journal: New Journal of chemistry

1. Synthesis of reduced Graphene Oxide (rGO) Nanosheets:

Graphite oxide (GO) was synthesized using a modified Hummers' process¹ with some modifications. Graphite (G) powder (6 g) was treated with a mixture of 98% concentrated sulphuric acid (130 mL) and 70% concentrated nitric acid (6 mL) in a round bottom flask under continuous magnetic stirring in an ice bath. The temperature of the solution was maintained below 5 °C for 5 hours. Eighteen grams of potassium permanganate (KMnO4) was added gradually maintaining the temperature of solution. After complete addition of KMnO4, the solution was continuously stirred for 24 h at room temperature. Then, distilled water (140 mL) was added to the above mixture and the temperature of the solution was maintained below 80 °C. After 15 min, the above mixture was diluted with 450 mL of distilled water and filtered. Two hundred milliliters of 20% HNO3 was added and heated to 80 °C for 30 min. The resulting suspension was washed and centrifuged at 4000 rpm repeatedly till the pH of the solution reached ~ 7. The product was dried in an

oven at 60 °C for 8 h. The synthesized graphite oxide was exfoliated to reduced graphene oxide nanosheets (rGO) by heat treatment at 300 °C under atmospheric pressure.

2. BET and BJH analysis:

Two stages are involved in the application of the BET method.² First, it is necessary to transform a physisorption isotherm into the 'BET plot' and from it derive a value of the BET monolayer capacity, n_m . In the second stage, the BET-area, A_s (BET), is calculated from n_m by adopting an appropriate value of the molecular cross-sectional area, σ . The BET equation in the linear form (1)

$$\frac{p/p^{o}}{n(1-p/p^{o})} = \frac{1}{n_{m}c} + \frac{c-1}{n_{m}c} \left(\frac{p}{p^{o}}\right)$$
(1)

where p is the equilibrium pressure of the adsorbed gas; p^{o} is the saturated vapor pressure of the adsorbed gas; V is the actual (multi-layer) adsorption amount of the sample, cm³/g; Vm is the single-layer saturated adsorption amount per unit sandstone mass, cm³/g; C is the constant reflecting the adsorption heat.

$$A_s = \left(\frac{V_m N a_m}{22400}\right) 10^{-1}$$
 (2)

The specific surface area is shown in the above (**Equation 2**): where As is the multi-point BETspecific surface area, m^2/g ; Vm is as described above; N is Avogadro's constant, 6.022×1023 ; am is the cross-sectional area of a single nitrogen molecule, the adsorption layer is a hexagonal close-packed structure, the nitrogen molecules are considered spherical, at 77.3 K.

The pore size distribution of the low-temperature nitrogen adsorption method is usually calculated by the BJH method based on the Kelvin equation (**equation 3**).³

$$ln\frac{p}{p^{o}} = -2\gamma \frac{v\cos\theta}{r_{k}RT}$$
(3)

where p/p^{o} is the equilibrium pressure over the saturated vapor pressure of the adsorbed gas; \tilde{v} is the mole volume of the liquid nitrogen; γ is the interfacial tension of the liquid nitrogen.

Fig. S1. Calibration curve for 2,4,6-trinitrotolune.

Fig. S2a. (a) BET adsorption isotherm and inset (a') BJH pore distribution curve of rGO

Fig. S2.b. (b) BET adsorption isotherm and inset (b') BJH pore distribution curve of TGO

Fig. S3. X-Ray Diffraction of reduced graphene oxide (rGO)

Fig S4. EDAX analysis of TGO

Fig. S5a. Zetapotential plot for reduced graphene oxide (rGO)

Fig. S5b. Zetapotential plot for TGO

Fig. S6: Effect of doses of composite (TGO) for removal of 2,4,6-Trinitrotoluene (TNT).

References:

- S. Hummers, R. E. Offeman, Preparation of graphitic oxide. Journal of the American Chemical Society, 1958, 80, 1339.
- 2 M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. S. W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution. (IUPAC Technical Report). *Pure Appl. Chem.*, 2015, **87**, 1051–1069.
- 3 E. P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. *J Am Chem Soc.* 1951, **73**, 373-380.