Co/CoO Nanoparticles armored by N-doped nanoporous carbon

polyhedrons towards glucose oxidation in high-performance non-

enzymatic sensor

Li Yan, Dandan Chu, Xue-Qiang Chu, Danhua Ge,* Xiaojun Chen*

Fig. S1. XRD patterns of ZIF-67 (A), Co₃O₄ and Co₃O₄@PDA (B).

Fig. S2. (A) N₂ adsorption/desorption isotherm and (B) pore size distribution of Co/CoO/N-C.

Fig. S3. XPS spectra of Co/CoO/N-C survey.

Fig. S4. EDS analysis of Co/CoO/N-C.

Fig. S5. CVs of ZIF-67/ITO (A) and Co_3O_4/ITO (B) in 0.2 M NaOH without (black line) and with (red line)1 mM glucose, scan rate: 50 mV s⁻¹.

Fig. S6. The CVs of ZIF-67@PDA after pyrolysis in N₂ without and with 1 mM glucose in 0.2 M NaOH (A). EIS spectra of the ZIF-67/ITO, Co_3O_4 /ITO, Co_3O_4 @PDA/ITO and Co/CoO/N-C/ITO in 5 mM K₃Fe(CN)₆/K₄Fe(CN)₆ solution containing 0.1 M KCl with frequency between 100 kHz and 0.01 Hz (B).

Fig. S7. The effects of the concentration of Co_3O_4 in Tris-buffer solution on the electrochemical performance.

Fig. S8. (A) Results of six repetitive measurements of 1 mM glucose. (B) Amperometric response obtained at Co/CoO/N-C/ITO on addition of 1 mM glucose into 0.6 M NaOH at +0.55 V. (C) The stability of the Co/CoO/N-C/ITO towards 1 mM glucose in a period of 9 months.